
Representing Incomplete Information in Game

Description Language and Monte-Carlo Tree

Search

Noah Morris

Hendrix College
Thesis in Computer Science

December 11, 2023

1

Contents

1 Abstract 4

2 Introduction 4

3 Background 7

3.1 Game Theory . 7

3.2 Monte-Carlo Tree Search . 8

3.3 General Game Systems . 10

4 Ludii’s Syntax 13

4.1 Containers and Components . 14

4.2 Integers and Booleans . 16

4.3 Defines, Start Rules, and Moves 20

5 Cards 22

5.1 Stack, Deck, and Card Ludemes 22

5.2 Shuffling and Dealing . 23

5.3 Agram Implementation . 24

6 AI 27

6.1 Imperfect Information AI . 27

6.2 Information Set Determinization 28

6.3 AI Performance in Card Games 29

7 Conclusion 31

8 Sources 32

2

Dedicated to Dr. David Sutherland, Aunt Dominique, Grandpa Bob, and Mom.

Special thanks to my advisor and the creator of CardStock, Dr. Mark
Goadrich, GGS Researcher Tyrone Mason, Dr. Ferrer, Dr. Yorgey,

and the Digital Ludeme Project.

1 Abstract

A deterministic game has no hidden information or randomness. A General
Game System is the union of a programming language through which param-
eters and goals may be specified, and a standardized, dynamic AI capable of
engaging in intelligent play in any situation described to it. Most General Game
AIs use Monte-Carlo Tree Search to determine moves, and struggle with non-
deterministic games.

Ludii is a powerful open-source general game system that was released in
2020. It was written in Java, with a state-of-the-art, highly efficient general
AI, and compact, readable syntax, which allows the user to specify information
that should be hidden, and to generate random numbers. There’s even Ludii
syntax for cards, but it has never been utilized, in any of the over 1,500 games
implemented for it.

The method presented in this paper acts on a Ludii game’s context, essen-
tially filling in all gaps in knowledge with possible outcomes before a move is
chosen. This must consistently track which information is legitimate and which
is assumption, keeping a base collection of data known as an “Information set”.
This strategy allows for intelligent, non-clairvoyant play in games of hidden
information from MCTS.

I’ve implemented a medley of non-deterministic games in Ludii, such as
Hearts, Golf, 98, and more that are available in the github repository linked
below. Also available is an external AI capable of non-clairvoyant MCTS, and
some Java files, for the internal AIs.

@ https://github.com/brimstonetrader/ludiigames

@ https://github.com/brimstonetrader/ludiiworkshop

2 Introduction

Let us consider a time of leisure, and suppose we find ourselves in the
company of ≥ 2 other people, and that there is rain. The odds are slim that the
Game chosen will be deterministic: likely, there will be randomly drawn cards,
hidden from view of the other players. Over the past 25 years, the board game
industry has grown massively, with thousands of new games released every year.
As such the average modern board game involves many strategic variables, at
least one of which is usually a specialized deck of cards. Consider modern classics
such as Catan, Ticket to Ride, and Pandemic: three undeniably engaging and
strategically dense games, all utilizing chance to some extent. The effect of the
inclusion of unknowns into a game is variable: among humans, there exists a
sentiment that games of chance or hiding are less difficult to play well than more

4

“pure” abstract strategy games: where in the latter one’s win is a sheer show
of force, some unknowable portion of the credit in one’s win in the former is
thought to be due only to fate.

Regardless of whether this sentiment is true, it is certain that games of
incomplete information are more difficult for the AI algorithms in Ludii to com-
prehend. It is also certain that, in life, the vast majority of decisions that an
individual must make are based on somewhat incomplete information. Even
in billion-dollar Large Language Models, a major weakness is clear: many AI
algorithms are essentially limited to the information that they have been given,
and are incapable of making reasonable, logical assumptions from what they
know, in service of solving open-ended problems. This paper will explore AI
methods that combat this issue in games of chance, demonstrate the methods
I have used to implement games of chance in a General Game System, and will
hopefully encourage others to take this problem on in the many other contexts
in which it manifests.

For a reasonable AI performance in a General Game System, it is sufficient
to provide a ruleset. All Ludii AIs take in a tokenized version of the game

description at outset in order to judge the value of any legal move
[9]

. Game de-
scriptions can become quite complicated, but below is a sample implementation
of Tic-Tac-Toe, which is not.

(game "Tic-Tac-Toe"

(players 2)

(equipment {

(board (square 3))

(piece "O" P1)

(piece "X" P2)})

(rules

(play (move Add (to (sites Empty))))

(end (if (is Line 3) (result Mover Win)))))

Ludii’s syntax, when it released in 2020
[11]

, was a massive improvement
on existing game description languages. It takes far less time to write a Ludii
description, because the language is very robust, allowing complex statements
to be expressed succinctly. This also makes it much easier to discern patterns
in game descriptions, and for designers to playtest varying rulesets. The project
has hundreds of games available on its website, an incredible, simultaneous feat
of computation and anthropology. However, aside from the games and methods
I will present in this paper, there are no card games, and no AI support for
them.

The games that I have written for Ludii all represent their cards as ob-
jects called something like ”Square1", "Square2", ... The rank and suit get
collapsed into one number, and one or the other can be extracted with integer

5

division or modulus. This direct correspondence of cards to integers is useful
for my AI method, as it allows a set of cards to be represented as a HashSet
of integers. This lets the AI method track what has been seen and not seen
quickly, and make reasonable assumptions, regardless of the broader rules of
the card game. The general strategy is essentially to enumerate all components
in play, to create a discrete set of possibilities that can be mapped to some run
of integers, and then do the same thing.

Information can’t really be hidden in Ludii. Syntactically, there is a robust
suite of aspects of an in-game situation that can be ”set Hidden”, but doing
so does not impact what the AIs are able to see in any way. This is because,
on setting something invisible to a particular player, one passes the “context”,
which is essentially the board position, through a function called “Information-
Context” which removes the necessary information. This method, on occurance,
only updates the GUI, meaning that the AIs are free to cheat. This method for
AI play of games of hidden information, just pretending that there is no hidden
information, will be henceforth referred to as “clairvoyant”.

The Ludii AI’s clairvoyance is demonstrated well by its performance in a
very simple game of hidden information. The Monty Hall Problem is a classic,
counterintuitive probability puzzle from the ’70s, which is as follows. At outset,
there exist three doors, behind two of which lie goats (worthless), and one, a car
(good). The protagonist (person A) chooses a door, gaining some affinity for it
in the process, and then the host (person B) opens one of the two remaining
doors, revealing a goat. Thus, of the three doors, one is totally out of the
running, one is the current choice, and one remains a possibility. Person B is
about to ask if you want to switch.

Monty Hall Problem

A chose Car (P (1
3
)) A Chose Goat (P (2

3
))

Car Choice Switch
Goat 1 Out Out
Goat 2 Switch Choice

This means that there is a 2 in 3 probability that you’re on the right side of
the chart, where switching will get you the car. The Ludii implementation, as
a one-player game, attempts to set what is behind the doors hidden: one would
expect that an AI would approach a win rate between 1/2 and 2/3. However,
I have found that all existing Ludii AIs win 100% of the time, demonstrating
their ability to see things that have been “set Hidden”. The primary goal
of this project is to implement an honest AI that plays demonstrably better
than random in arbitrary non-deterministic games. Some secondary goals are
to implement card games for said AI to play, diagnose existing problems in
representation of hidden information, and to explain the relevant syntax.

6

0 4 8 12 16 20
0

4

8

12

16

20

Instances

W
in
s

20 Runs of Monty Hall Problem With Ludii AI

Random
Ludii AI

3 Background

3.1 Game Theory

Returning to Tic-Tac-Toe, assuming both players play perfectly, the game
will always end in a draw. In Connect-4, the first player will win. In general,
a Nash Equilibrium exists for any finite game (which can be represented as a
grid of numbers, or matrix, that approaches a “steady state” of win, lose, or
draw on sufficiently many iterations (or moves) like a Markov Chain). This
means, basically, that any game that humans play either has an unbeatable
strategy for the first player, second player, xor always draws with perfect play.
In games with random elements, this equilibrium is called a mixed strategy. This
is a probability distribution that chooses between pure strategies randomly. A
mixed strategy will not assuredly win every time, but will perform better than
any other with sufficiently many trials.

In the 1970s, a branch of mathematics called Combinatoric Game Theory
arose, which analyzes Combinatoric Games as mathematical objects. A crucial
algorithm used within this discipline is calledMinimax. Essentially, this involves
assessing each counter-move the opponent could make to each move the active
player has available, to determine the best situation the active player could be
in next turn, assuming the opponent plays perfectly. This decision rule leads
to perfect play if one looks far enough into the future. The main drawback is
that the resulting tree of moves is humongous, and impractical to assess in its
entirety. This method has not been historically successful at games with large

7

branching factors, such as Chess and Go, and requires perfect information.

3.2 Monte-Carlo Tree Search

Taking random samples from an outcome space too large to assess tradi-
tionally is a classic and somewhat obvious method to draw a conclusion in a
situation like this. If I wanted to know the average age of some website’s users,
I would not ask every user their age, but some representative sample, and get
an approximation with a measurable degree of accuracy.

This concept is most commonly applied to Combinatoric Games with an al-
gorithm first described in 2006, called Monte-Carlo Tree Search. We’ll suppose
there exists a data structure called “GameState”, which stores the locations of
all pieces and some other consequential information. We’ll go more in detail
on the general information such a data structure requires in the next section.
Further, we’ll suppose the existence of a method for GameStates called “getAll-
PossibleMoves()”, which returns an array of possible moves from the position.
Once a GameState has been fully played through, we can determine the scores
for each player with the method “getScores()”, which returns an array of dou-
bles. In a two player game, this will be [1.0, 0.0] if the first player wins, or
potentially [0.5, 0.5] if it’s a draw. In a game with more than two players, this
method will return an appropriate ranking for each player. Putting all of this
together, we can determine a good move by checking random playouts for as
long as we can.

def mcts(int time_allowed, GameState root, int player):

#initialize data structures

Move[] legalMoves = root.getAllPossibleMoves()

dict(Move, double) scoresPerMove = new dict(Move, double)

dict(Move, int) visitsPerMove = new dict(Move, 1)

int numIterations = 0

while (time_elapsed < time_allowed):

#select which node we explore this time around.

GameState leaf = uct(root, legalMoves, scoresPerMove,

visitsPerMove, numIterations)

#random playout until we reach end-state.

GameState result = new GameState(leaf)

while result is not terminal:

result = result.apply(result.getRandomMove)

8

#update data structures

double myScore = getScores(result)[player]

scoresPerMove[leaf] += myScore

visitsPerMove[leaf]++

numIterations++

#output most explored move.

return visitsPerMove.keyWithMaxValue()

UCT stands for “Upper Confidence Trees”, which is a method that chooses
which node we will explore in a particular iteration, and ultimately decides
the most explored, output move. The core equation assigns a value to each
node, denoted Si. This value comes from the sum of an exploration term and
an exploitation term. The exploitation term for a node ni is the number of
winning playouts divided by the total number of playouts on ni. This will
always be between 0 and 1. The exploration term, for that same node ni, is the
total number of iterations divided by the number of iterations on ni. This can
get much larger than [0,1], so to make the two terms occupy similar ranges we
take the logarithm of the total number of iterations, multiply it all by two, and
take the square root. These may seem somewhat arbitrary, but they are just
convenient mathematical tools to balance the two things we want our method
to do.

Si =
wi

ti
+
√

2ln(Ni)
ti

Si → Heuristic value of node ni.

wi → Number of wins for node ni.

ti → Number of playouts run for node ni.

Ni → Total number of considered playouts.

We can define our UCT function, based on the available data for any game,
like this:

def uct(GameState root,

Move[] legalMoves,

dict(Move, double) scoresPerMove,

dict(Move, int) visitsPerMove,

int numIterations):

Move maxMove = null

9

double maxValue = -infinity

for (Move move : legalMoves):

w_i = scoresPerMove[move]

t_i = min(visitsPerMove[move], 1)

s_i = (w_i / t_i) + (2 * ln(numIterations) / t_i) ^ 0.5

if maxValue < s_i:

maxMove = move

maxValue = s_i

return root.apply(maxMove)

This method is adaptable to games with hidden information. All AIs in
Ludii run a variation of this, with the default being named “UCT”. This method
was the core of AlphaGo, which DeepMind used to defeat Go grandmaster Lee
Sedol in 2016, and the algorithm plays very well in many other games with
larger branching factors than feasible for Minimax.

3.3 General Game Systems

The first General Game System, Zillions of Games, debuted in 1998. Its
AI, according to the FAQ on its website, is “basically a classical, brute-force,
tree-search engine”, which “doesn’t play as well in games with huge branching

factors such as Shogi”
[27]

. It cannot handle cards, mancala, and many other
common sorts of game.

The first academic exploration of the concept came in 2005, when Stanford
released the “Game Description Language”, and began a yearly series of compe-
titions for AIs in varied strategy games. This language is still in use today, and
an extension of it allows for hidden information and random elements. How-
ever, it is very verbose, taking 381

[9]
keywords to define Tic-Tac-Toe. It is good

for representing games to computers, but not for humans. We consider similar
broad concepts in many games, such as formation of lines, custodial capture,
and the pie rule. A human-friendly GDL would need many predefined meth-
ods, to keep up with our capability to utilize common tropes in understanding
situations.

CardStock is a General Game System that is particularly designed to render
card games. Its syntax allows for representation of Trick-Taking, Adding, Draw-
Discard, and many other styles of card game. There are some similarities to
Ludii, but enough differences that it warrants examination. There are four
base types: Strings (which are all-caps), Integers, Booleans, and Cards. The
functions that return each are as follows.

10

String (all caps)

(cardatt [String] [Card])

Integer (non-negative)

(+, -, *, //, mod, ^)

(score [Card] using [PointMap])

(sum [Collection<Card>] using [PointMap]) (size [Collection<Card>])

([Owner] sto [String]) // variable assignment

(random x y), (random x) //0 implied min

(tri x) //1,3,6,10,15: factorialites

(fib x) //1,1,2,3,5,8: fibonaccis

Card (created at startup, never directly called)

(top [List<Card>]) (bottom [List<Card>])

([Integer] [List<Card>])

(actual (min [List<Card>] using [PointMap]))

(actual (max [List<Card>] using [PointMap]))

Boolean

(and [Boolean] [Boolean]+) (or [Boolean] [Boolean]+) (not [Boolean])

(> [Integer] [Integer]) (< [Integer] [Integer])

(>= [Integer] [Integer]) (<= [Integer] [Integer])

(== [Integer] [Integer]) (!= [Integer] [Integer])

(== [String] [String]) (!= [String] [String])

(== [Card] [Card]) (!= [Card] [Card])

(== [Team] [Team]) (!= [Team] [Team])

(== [Player] [Player]) (!= [Player] [Player])

(all [Collection] [Variable] [Boolean]) (any [Collection] [Variable] [Boolean])

Team and Player are two subtypes of Owner. Every card component has
an owner: if no player owns it (i.e. it hasn’t been drawn yet) it has the third
possible owner, Game. PointMaps are key-value sets that allow for each card to
have an integer assigned to it, which can be useful for scoring and specialty decks.
Variables can be declared globally, and also used within a single expression.

Variable := string w apostrophe first.

ex. ’C, ’P, ’SUIT

(declare [Type] [Variable]) // only at beginning of program; global

(let [Type] [Variable] [Expression]) // anywhere; local

PointMap :=

(set (game points [String]) Collection<(Card) (Integer)>)

(using (game points POINTMAP) //to use already defined PointMap

Owners: Game

(game)

Player

([Integer] player) (current player)

(next player) (previous player)

(owner [Card])

Team

([Integer] team) (current team)

11

(next team) (previous team)

(team [Player])

Multiple of any of the base types can be combined to form a Collection.

Collection<String> := (String, String, ...)

ex. (YELLOW, GREEN, BLUE, BROWN, RED, WHITE)

Collection<Integer> (range [Integer] .. [Integer])

Collection<Card>

([Owner] (vloc | iloc | hloc | mem) [String])

vloc: visible to everyone

iloc: visible to owner, invisible to others

hloc: invisible to everyone, including owner

(filter [CardCollection] [Variable] [Boolean])

(union [CardCollection] [CardCollection]*)

(top [Collection<Collection<Card>>])

(bottom [Collection<Collection<Card>>])

([Integer] [Collection<Collection<Card>>])

Collection<Collection<Card>>:

(tuples [Integer] [CardCollection] ’using’ [PointMap])

(all [Collection] [Variable] [CardCollection])

Collection<Player>: (player) //all players

(other player)

(filter [Collection<Player>] [Variable] [Boolean])

Collection<Team> := (team) //all teams

(other team)

(filter [Collection<Team>] [Variable] [Boolean])

Collection<A>:

(intersection [Collection<A>] [Collection<A>])

(disjunction [Collection<A>] [Collection<A>])

Collection<Collection<A>>:

(partition [Collection<A>])

Cardstock and Ludii have many major differences: in Cardstock there is
no need for a notion of board position. Another major difference is that in
Ludii, components are set hidden. In CardStock, locations are, with visibility
for each being set the first time they are mentioned. Having worked with both,
I believe CardStock’s solution is better. It is more intuitive, when writing a

12

game description. Also, in Ludii’s source code, locations are ultimately what is
set hidden, and this incongruence between different levels of representation has
led to many difficult-to-understand bugs, in my case.

A game gets set up by instantiating players and cards, and then repeating
a sequence of stages, choice blocks, and do blocks until some end condition is
met. Lastly, within turns, the gameplay is specified by Actions, which can be
used to shuffle the deck, move cards, set a new active player, end a turn early,
or change variables. The asterisk to the side indicates that the blocks can take
any number of arguments, without using a list.

Block := (do ([Action]*))

(choice ([Action]*))

Setup := (create teams [Integer]*)

(create players [Integer])

(create deck [Collection<Card>] [Deck])

Stage := (stage player [Boolean] [Do | Choice | Stage]*)

(stage team [Boolean] [Do | Choice | Stage]*)

Scoring := (scoring max [Integer])

(scoring min [Integer])

Action :=

(shuffle [CardCollection])

(move [Card] [Card])

([Boolean] [Action])

(turn pass)

(repeat [Integer] [Action]) (repeat all [MoveAction])

(inc [IntegerStorage] [Integer]) (dec [IntegerStorage] [Integer])

(set [IntegerStorage] [Integer])

(cycle current next) (cycle current previous)

Cardstock’s syntax has been utilized to implement many card games. It
simulates many games with random and MCTS players, gathering heuristics
that are useful for game designers, such as ‘Fairness’ and ‘Drama’. The MCTS
model does not have Ludii’s problem of ignoring hidden information: my new
AI for Ludii uses a similar method to allow for this.

4 Ludii’s Syntax

In 2020, Ludii was released, with its 24-word description of Tic-Tac-Toe, and
much more than GDL’s nine predefined concepts. The reference grammar has

13

over five hundred pages, and the many “Ludemes” allow for games to be repre-
sented succintly. The broad structure of a game description is below. Container,
Component, Move, and StartMove are all data types which represent part of a
game state. They are all fairly high level structures in Ludii, but ultimately,
they are made of booleans, lists, enums, and integers, like anything else.

(game "Game_Name"

(players <int>)

(equipment {

(<container(s)>)

(<component(s)>)

})

(rules

(start <startRule(s)>)

(play

(move <move(s)>)

(end <result>)

)

)

One goal of this project is to effectively represent cards in a General
Game System. The reason this goal is worth pursuing is that it has not been
done in the current industry leading product, Ludii, and the challenges of repre-
senting incomplete information to an AI algorithm have many broader applica-
tions. Another reason this goal is worth pursuing is that General Game AI, as a
discipline, is in its infancy, and has not been properly applied to real-time video
games, or modern board games like Catan, Ticket To Ride, or Pandemic. The
issues we will work through here are present in those far-off future contexts;
this is a stepping stone toward that. Our core method is Monte-Carlo Tree
Search: at the end of the day, we will be assessing the tree of options to guess
a reasonable move. This demonstrates the inherent connection between AI and
linguistics. To search the tree efficiently, our syntax should be as direct as pos-
sible, so that we spend very little of our time parsing game descriptions. Before
we begin representing cards, we need to thoroughly understand our foundation.

4.1 Containers and Components

Broadly, a container is the board, and a component is a piece. A component
is defined like this:

(piece <string> <roleType> [<moves>])

EX. (piece "Dog" P1 (step (to if:(is Empty (to)))))

(piece "Pawn" Each)

(piece "Square9" Shared)

14

Figure 1: The example boards at the bottom of the page, as rendered by Ludii

Square brackets around an argument means that its presence is optional.
In this context, one may define a piece as having certain moves automatically,
or may define them later. A “roleType” is a player, or list of players. It can be
one of these:

<roleType> ::= Ally | Enemy | Neutral | Player | Shared |

Each | NonMover | Mover | Next | Prev |

P1 | P2 | P3 ...

Team1 | Team2 | Team3 ...

A “container” can be defined as any arbitrary graph, but the syntax to
do so is complicated and beyond the scope of this paper. Consult sources [6]
and [11] if that’s what you want to do. For our purposes, the board container
can be defined as a regular tiling of some size with a set basis. The optional
“largeStack” boolean allows the user to determine whether or not stacks higher
than 32 units high should be allowed. Do not activate this boolean: it crashes
the engine in games of hidden information. It is activated by default when the
“Card” Ludeme is instantiated, which is why that Ludeme does not work.

<basis> ::= (rectangle <int> <int>) | (square <int>) |

(tri [<shapeType>] <int> [<int>]) |

(hex [<shapeType>] <int> [<int>]) |

(tiling <tilingType> <int> [<int>])

<tilingType> ::= T31212 | T333333_33434 | T33336 | T33344 |

T33434 | T3464 | T3636 | T4612 | T488

<shapeType> ::= Diamond | Hexagon | Rectangle | Square |

Star | Triangle

<container.board> ::= (board <basis> [largeStack:<boolean>])

EX. (board (tiling T33434 5))

(board (hex Diamond 9))

(board (square 8))

15

4.2 Integers and Booleans

The integer is the second most basic type in Ludii: a player is an integer,
a board location is an integer, and many other things rely upon them. Ludii
supports +, *, max, and min for two integers as well as lists of integers. It
also supports -, //, ^, and %, for two integers only. There is an abs function,
which only takes one integer, and potential for if statements which always return
integers, and thus have type integer. Ludii is statically typed, and its syntax
resembles Lisp or Haskell, although some variables are mutable.

There are a few keywords which analyze the GameState and return an
integer based on it. (mover) returns the index of the player that is currently
moving, and (prev), (next) return the index of the previous or next player to
go. Each component has four integer variables, called “who”, “state”, “what”
and “value.” “Who” is the player index assigned to a particular component
(or 0 if it’s Shared or Neutral). For, example, if P1 has a piece at index 17,
(who at:17) returns 1. The other three variables can be assigned and changed
in the rules, and are important when a component has many possible states, as
with cards. The user specifies the index of the location where the component
is located, and potentially the level if stacks exist. “What” is immutable, set
when the component is named at the beginning of the game description. For
any component name, “what” of “Name1” is 1, “what” of “Name2” is 2, and
so on. State and Value may be set at any point throughout the game. Another
variable, “score”, can be set for any player, and can be consequential to win-
states.

(state at:<int> [level:<int>])

(value Piece at:<int> [level:<int>])

(what at:<int> [level:<int>])

(who at:<int> [level:<int>])

(score <roleType>)

The user can set standalone integer variables throughout the game, calling
them with (var <string>). For accessing an element of an array of integers,
(arrayValue <{int}> index:<int>) takes the list and index. To get a random
integer selected from some range, use (value Random (range <int> <int>)).
The top level of the stack at some index on the board is (topLevel at:<int>)

(although, again, be very careful with stacks). Player’s hands may be accessed
directly, by index, or by the command (handSite (<roleType>) [<int>])

A group of integer functions begin with “size”, because they measure the
size of some configuration. The simplest is (size Array <{int}>), which re-
turns the length of an array. There are also commands to measure the size
of a contiguous group, stack, and territory as it’s defined in Go. Two very
common integer functions that return indexes of locations are (last To) and
(last From), which return the location that the last player to move went to or

16

from. Distinct from the list, a useful, immutable data structure definable in the
equipment section is pair, which allows the user to define a map of key-value
pairs at the beginning of the game. It can associate roleTypes, ints, and strings,
allowing for particular conversions. I have found it useful in scoring, or creating
arbitrary decks.

Next is the group of integer functions prefixed “count”. Truthfully, there is
not much of a theoretical distinction between “size” and “count”, but this is the
way this system works. Many of these rely on the <directions> enum. Relative
to the active player, the user can specify Leftward, Rightward, Forward, and
Backward, as well as diagonal combinations, and the three closest directions
by suffixing an s. The most common three for game descriptions are Orthog-
onal, Diagonal, and Adjacent. For example, a chess king can move anywhere
Adjacent, and a checker can move to (intersection Diagonal Forwards).

O O O OOO

ORTHOGONAL: OXO DIAGONAL: X ADJACENT: OXO

O O O OOO

O

LEFTWARD: OX BACKWARDS: X RIGHTWARDS: XO

OOO O

Arrays of integers may be operated on with traditional set operations, like
difference, intersection, and union. They are able to branch with if statements,
and regions may be converted to lists of integers with the (regions ...)

function. An array can also be created from a beginning and endpoint of a
range of integers, like {1..8}.

For any given set of directions, there are functions to count the num-
ber of contiguous groups and liberties (another Go construct), as well as the
amount of available locations and neighbors. Some simple, but useful counts
are (count Players), (count Turns), and (count legalMoves).

Lastly, in Ludii there are many functions prefixed “sites”, which return
a particular subset of the board-space. All, ultimately, can be accomplished
through (sites {int}), specifying board indices directly, but many are use-
ful in practice. One that appeared in an earlier example is (sites Empty),
which is often the only place a player is allowed to move. The opposite is
(sites Occupied), which is included in full below.

(sites {int})

(sites Empty)

(sites Between from:<int> [fromIncluded:<boolean>] to:<int>

[toIncluded:<boolean>] [cond:<boolean>])

(sites Hidden [<hiddenData>] (to:<moves.player> | to:<roleType>))

17

(sites Random [<sites>] [num:<int>])

(sites Group (at:<int> | from:<sites>) [<direction>] [if:<boolean>])

(sites Occupied (by:<moves.player> | by:<roleType>))

(sites LineOfSight [at:<int>] [<direction>])

(sites [<player> | <roleType>] [<string>])

(sites Hand [<player> | <roleType>])

(difference <sites> <sites>)

(if <boolean> <sites> [<sites>])

(union ({<sites>} | <sites> <sites>))

(intersection ({<sites>} | <sites> <sites>))

The set functions, if, union, intersection, and difference, can all be used on
regions, for instance, to find a spot in one’s hand that is not empty. sites Between

gets all sites between two on the board. A ‘LineOfSight’ is a line emanating from
some location in some direction through exclusively empty spaces, as defined
by Mike Zapawa’s “Tumbleweed.” A ‘Group’ is a set of pieces each of which are
adjacent, orthogonal, or next to each other via whichever direction is specified,
as in Christian Freeling’s “Symple.”

The most primitive type, the boolean, is rampant in Ludii. The basic,
very common comparison operators for two integers are available: ≠,<,≤,>,≥,
and =. Equals may be used between an int and a roleType, which is useful
in contexts where you’re using both. The standard functions of two booleans
are also available: and, or, and xor. The unary not, and ternary if, are also
available. Both ‘and’ and ‘or’ may be applied to a list of booleans.

To gauge whether the last player or all players have passed, there exist
booleans (was Pass) and (all Passed). A boolean also represents whether a
given player has any pieces of a given type, as “no Pieces” below. Whether a
board location has ever been visited is simply (is Visited <int>). Screening
for repeated board positions is done by (is Repeat Positional). is Hidden

checks whether one of our four integer variables has been set hidden to some
player at a particular board location. Loop judges if there exists a fully sur-
rounded board territory, and Blocked and Connected determine whether or not
two sites are connected.

(no Pieces [<roleType> | of:<int>] [<string>] [in:<sites>])

(is Hidden [<hiddenData>] at:<int> [level:<int>] to:<roleType>)

<hiddenData> ::= State | Value | What | Who

(is <isPlayerType> (<int> | <roleType>)) |

<isPlayerType> ::= Active | Enemy | Friend | Mover | Next | Prev

(is Loop [{<roleType>}] [<direction>] [<int>] [<int> | <sites>])

(is Connected [<int>] [at:<int>] [<direction>] {<sites>})

(is Blocked [<int>] [at:<int>] [<direction>] {<sites>})

(is Line <int> [<absoluteDirection>] [through:<int> |

throughAny:<sites>] [<roleType>] [exact:<boolean>]

[contiguous:<boolean>])

18

(is Pattern {<stepType>})

<stepType> ::= F | L | R

Line takes an integer length (three in the case of Tic-Tac-Toe), and carries
a variety of optional, self-explanatory parameters. The is Pattern boolean
is a bit more general, allowing for recognition of any polyomino as a series of
steps. These steps are F (forward), L (left), and R (right). An empty list of
steps corresponds to the monomino, one F is a two unit domino. The sequence
tracks every unit crossed by following the path on a grid (which generalizes to
whatever tiling is specified as the board). If one goes forward, turns left, goes
forward again, turns left again, and goes forward one last time on a square
grid, they will have traced out a square, regardless what direction they began
facing. Because of that last property, patterns work for any rotation of the given
polyomino. Below are three pentominoes, represented in this format.

XX

X XX XXX

{F F F L F} = X {F L F L L = XX {F L F F L F} = X X

X F L F R F} X

All end conditions are based on booleans. Most of the time, it’s just an if-
statement ending in (result Mover Win). The slightly more complex abstract
syntax is below.

<end> ::= (end (<endRule> | {<endRule>}))

<endRule> ::=

<end.forEach> ::= (forEach Player if:<boolean> <result>)

<end.if> ::= (if <boolean> <result>)

<result> ::= (result <roleType> <resultType>) | <byScore>

<resultType> ::= Draw | Loss | Win

<byScore> ::= (byScore [{<end.score>}] [misere:<boolean>])

<end.score> ::= (score <roleType> <int>)

EX. (end (if (no Moves Next)

(byScore {(score P1 (count Pieces P1))

(score P2 (count Pieces P2))})))

(end {(if (no Pieces Mover) (result Mover Win))

(if (= (count LegalMoves) 0) (result Mover Loss))})

(end {(if ("HandEmpty" Mover) (result Mover Win))

(if (all Passed) (result Mover Draw))})

“byScore” is usually set to the “Score” variable that exists for each player,
although it can be any integer. The “misere” boolean decides whether the object
is to minimize or maximize.

19

4.3 Defines, Start Rules, and Moves

Before the game starts, the user may define functions, allowing for refactoring
and less repetition. Arguments are dynamically typed, referred to as “#1, #2,”
and so on. For example, below is a function which finds the amount of bombs
Adjacent to the given position, which is used in Minesweeper.

(define "Nbors"

(count Sites

in:(intersection

(sites Around #1)

(sites Occupied by:P1 component:"Bomb"))))

At the beginning of the game, there are two groups of commands that can
be used to enact the “StartRules”: those that begin with “set” and those that
begin with “place”. The former relate to variables that are not on the board.
A player’s score can be set, a region can be deemed to belong to a particular
player, and any of the four component variables may be set hidden. The final
one is very vital to this project, and will be examined further later on. With
“place”, components may be placed at any specified location, in a stack, or
within a region at random. StartRules can be expressed with forEach loops on
player roleTypes, lists of integers, particular board locations, and ranges. With
that, we can express the full suite of possible startRules.

(forEach <ints> <startRule>)

(forEach Value min:<int> max:<int> <startRule>)

(forEach Player <startRule>)

(forEach Site <sites> [if:<boolean>] <startRule>)

(place Random <sites> {<string>})

(place Stack items:{<string>} <int>)

(place <string> {<int>} [state:<int>] [value:<int>])

// fill region with one item

(place <string> <int> [state:<int>] [value:<int>])

// place one item in one location

(set Score <roleType> <int>)

(set <roleType> [{<int>}] [<sites>] [{<string>}])

(set Hidden <hiddenData> at:<int> [level:<int>] to:<roleType>)

After setup is done, a game can be either a sequence of phases with defined
transitions, or one large “play” block. In either case, the rest of the game
assumes there will be one active player, who begins their turn with one or more
“decision moves”, and enacts some set of “non-decision moves” afterward in a
“then” block. Multiple decision-moves can be expressed with many different
operators. The “and” operator means all moves in the list must be done in

20

a turn. “Or” lets the player choose one. “Priority” means the player must
take the first move if it’s possible, and otherwise may take the second, like for
compulsory capture in Checkers. There are many possible “ForEach” loops that
return moves, as well as regular if and while blocks.

I’ve found 12 decision moves to be all needed for writing and understanding
most game descriptions. There are much more available, but the following list
is sufficient for most purposes. “Step” allows a piece to move once in a specified
direction. “Slide” allows moving any amount of times, like a Chess Queen or
Rook. “Shoot” places a new component that emanates from some existing com-
ponent in a specified direction, as in my favorite game, “Amazons.” “Select”
lets the user select a location, which can be operated upon later with the “last
From” integer function. “Swap” lets the player choose two locations, which
swap components. The empty, default “move” command moves a component
from any location to any location. “Promote” lets the player replace a compo-
nent with another. “Pass” does nothing. “Hop” jumps over some location and
potentially captures an opponent piece, like in Checkers, while “Leap” does not
capture, like a Chess Knight. “Add” lets the user add some component to a
selected board location, and “Remove” does the opposite.

<from> ::= (from [<sites> | <int>] [level:<int>] [if:<boolean>])

<to> ::= (to [<sites> | <int>] [level:<int>] [if:<boolean>])

<then> ::= (then <nonDecision>)

(move <from> <to> [copy:<boolean>] [stack:<boolean>] [<then>])

(move Add <piece> <to> [stack:<boolean>] [<then>])

(move Remove <int> [level:<int>] [at:<whenType>] [<then>])

<whenType> ::= EndOfTurn | StartOfTurn

(move Select <from> [<then>]) |

(move Shoot <piece> [<absoluteDirection>] [<to>] [<then>])

(move Slide [<from>] [<direction>] [<to>] [stack:<boolean>] [<then>])

(move Step [<from>] [<direction>] <to> [stack:<boolean>] [<then>])

(move Swap Pieces [<int>] [<int>] [<then>])

(move Promote [<int>] <piece> [<moves.player> | <roleType>] [<then>])

(move Pass [<then>])

(move Hop [<from>] [<direction>] <moves.to> [stack:<boolean>] [<then>])

(move Leap [<from>] {<stepType>} [rotations:<boolean>] <to> [<then>])

Non-decision moves can be chained with use of multiple then statements.
There are a couple of commands that can be used as both decisions and non-
decisions, based on whether they are preceded by the keyword “move”. Two
very common ones are “add” and “remove”. To move a piece from one location
to the other as a nondecision, the keyword is instead “fromTo”. A few nonde-
cision moves that cannot be stated as decisions are “addScore”, “moveAgain”,
and “custodial”, which captures surrounded pieces as in Pente. Sowing, like in
Mancala, is robust, available, and beyond our scope. Lastly, at this stage in a
turn, many of the “set” prefixed StartRule ludemes may be applied.

21

(add [<piece>] <to> [stack:<boolean>] [<then>])

(fromTo <from> <to> [copy:<boolean>] [stack:<boolean>] [<then>])

(remove (<int> | <sites>) [level:<int>] [at:<whenType>] [<then>])

(addScore (<player> | <roleType>) <int> [<then>])

(custodial [<from>] [<absoluteDirection>] [<to>] [<then>])

(sow [<int>] [count:<int>] [numPerHole:<int>] ...)

(moveAgain [<then>])

(set Hidden <hiddenData> (at:<int> | <sites>) [level:<int>]

(to:<player> | to:<roleType>) [<then>])

(set NextPlayer (<player> | <ints>) [<then>])

(set <setSiteType> at:<int> [level:<int>] <int> [<then>])

<setSiteType> ::= Count | State | Value

(set Var [<string>] [<int>] [<then>])

This is enough Ludii grammar to attempt to implement the first card game
in the system.

5 Cards

5.1 Stack, Deck, and Card Ludemes

There exist Ludemes representing Cards, which are classified as Components,
and Decks, which are classified as Containers. Alongside them, there exist a
whole parallel corpus of specific card-based Ludemes, which are essential in
using them. Below is a sample card game, using some Ludemes I did not cover
in the previous section.

(game "DECK"

(players 3)

(equipment {

(board (square 10))

(deck {(card Seven rank:0 value:0 trumpRank:0 trumpValue:0) ...

(card Ace rank:7 value:11 trumpRank:5 trumpValue:11)})

(hand Each size:2)

})

(rules

(start {(deal Cards 2)})

(play (move PlayCard))

(end (if "HandEmpty" (result Mover Win)))

)

)

This code is syntactically correct: Ludii’s parsers do not throw any errors

22

on it. Once it compiles, though, the engine has a glitch attack. If one replaces
PlayCard with Pass, it compiles successfully, but the cards cannot be seen, even
when set manually in the graphics metadata. Ludii’s developers are aware of
this, and plan to rebuild this part of the syntax in the future, but I live in the
present.

The stacktrace when one tries to recreate the aforementioned glitch begins
with line 2728 in Game.java, where the cards are created. They are generated in
a Stack, in some random order. Regardless of whether the ‘largeStack’ boolean is
set, line 579 in ContainerStateStacksLarge.java becomes problematic whenever
this stack is placed, taking particular umbrage with the cards being hidden. I
have not been successful in getting hidden information to compile in Ludii with
the largeStack boolean set at all. Decks, frequently, have more than 31 cards.
Dr. Eric Piette, who created Ludii, stated on the website’s forum in 2022 that “I
do not think we have games with stack + hidden info (since I disabled the card
games in Ludii because that was not enough efficient to describe these games)”.
Stacks, at present, do not work, but we can represent collections in other ways.
Let’s try a different approach out.

5.2 Shuffling and Dealing

Representing cards in Ludii is somewhat arduous. Each card can behave differ-
ently with the integer variables discussed in the previous section. It is tempting
and somewhat natural to use two of the available options, say, “state” and
“value”, to represent the rank and suit of a given card, but in this paper I will
only be using the immutable one. I’ve found that graphics are easier to ren-
der when using two, but dealing is infeasible, unless one wants to select with
replacement, which I do not.

As an arbitrary choice, the component I will use as my base for all card
representations is the “Square”. In the equipment section of the game descrip-
tion, one must instantiate each card, as below. This is very similar to what the
“Deck” Ludeme attempts to do.

(piece "Square1" Shared), (piece "Square2" Shared), ...,

(piece "Square51" Shared), (piece "Square52" Shared)

I’ve found most card games to be reasonably played on a rectangle with
length equal to the number of players, and height of one or two. Each player
needs a place to lay down a card, and occasionally a place to store tricks they’ve
won. To assign a specific board location to each player, we can use the map

ludeme, to associate each player to a place on the board (represented as an
integer). Each player needs a hand, and there still should be enough space for
each card to be located at a particular index. We want to be able to grab the

23

Squarex ⌊x/4⌋ = 0 ⌊x/4⌋ = 1 ⌊x/4⌋ = 2 ... ⌊x/4⌋ = 12

x % 4 = 1 A♥ 2♥ 3♥ K♥
x % 4 = 2 A♦ 2♦ 3♦ K♦
x % 4 = 3 A♣ 2♣ 3♣ K♣
x % 4 = 0 A♠ 2♠ 3♠ K♠

Table 1: Integer Division and Modulus ⇀ Card

card at a board index without knowing what it is: this will be how we represent
drawing a card. This means we’ll need to add to the length, to have some places
cards can go if they might get drawn later.

To deal, we can use the place Random startRule to place cards into each
player’s hand and off to the cropped-out, invisible-to-the-user-and-AIs part of
the board. Before play begins, we can set all of those hidden, except that we
must allow each player to view their hand. Because Ludii allows the user to
define functions for future use, like many programming languages, I like to put
all of this into ”SetHiddenEach”, which I can copy/paste into whatever game
description needs it.

Now, each player has a randomly dealt collection of five integers. We can
associate each one to a pair of integers, where each card Squarex has rank ⌊x

4
⌋

and suit x % 4. This is very easy to check for in code, as Ludii supports both
operations.

5.3 Agram Implementation

The first card game that I implemented for Ludii is Agram, a four-player trick-
taking game that uses a 35 card deck. There are four suits and ranks A, 3-10,
with no Ace of Spades. Before play begins, each player is dealt 6 cards. The
winner of a hand is the smallest number played, with following suit required if
possible. The winner is the player who takes the last trick.

(game "Agram"

(players 4)

(equipment {

(board (rectangle 1 15))

(piece "Square1" Shared) (piece "Square2" Shared) ...

(piece "Square34" Shared) (piece "Square35" Shared)

(hand Each size:6)

(map "Table" {(pair P1 1) (pair P2 2)

(pair P3 3) (pair P4 4)})})

(rules

(start {

24

(place Random (sites (array {5..39}))

{"Square1" "Square2" ... "Square35"})

(forEach Player

(set Hidden What (sites (array {5..15})) to:Player))

"SetHiddenEach"

})

Each player has six spaces in their hand, and there are four players, and
thirty-five cards total. With a seventeen space board, all 35 cards may be placed
randomly either within one of the 24 spaces in a player’s hand, or the 11 spaces
that come after the playing area. We set all 11 of those hidden to everyone,
then set hands hidden appropriately with a function that hides each player’s
hand from each other.

phases:{

(phase "Lead"

(play

(move

(from (sites Hand Mover))

(to (mapEntry "Table" (mover)))

(then (and {

(set Var "LedSuit"

(% (what at:(to) level:(topLevel at:(to))) 4))

(set Score Mover

(/ (what at:(to) level:(topLevel at:(to))) 4)))}))))

(nextPhase "Follow"))

Arithmetic, like all functions in Ludii, uses Polish Notation, like − 9 4 = 5,
instead of the more familiar infix notation, 9 − 4 = 5. When leading, a player
may move any card from their hand to their place on the table. They set the
suit that must be followed if possible, which is set to a variable. We allow a
stack to form of played cards, because they are no longer hidden, and the engine
no longer has trouble rendering them. We could remove them from the game
altogether, which would look cleaner, but allowing them to linger lets the AIs
maintain their memory of played cards easily. The player’s score is just the rank
of the played card. This phase goes into the next once it has happened once.

(phase "Follow"

(play

(priority {

(move

(from (sites Hand Mover))

(to (mapEntry "Loc" (mover))

if:(= (% (what at:(from)) 4) (var "LedSuit")))

25

(then (set Score Mover

(/ (what at:(mapEntry "Loc" Mover)

level:(topLevel at:(mapEntry "Loc" Mover)))

4))))

(move

(from (sites Hand Mover))

(to (mapEntry "Loc" (mover)))

(then (set Score Mover (10))))}))

(nextPhase (= (% (count Moves) 5) 4) "Trick"))

We define following suit in Ludii with the priority operator, which takes
two moves, and allows the player to make a move of the first kind, unless there
are no legal moves of the first kind, in which case the second kind is allowed. In
this case, we require the player to play a card of the same suit as our variable
defined in “Lead”, and set their score as we did before. If this is impossible,
the player may play any card, but their score is 10, meaning there is no way
for them to win the trick (because the minimum wins). Switching players and
assigning the winner of a trick is counted as its own turn, so each cycle of play
has five turns total, and we will switch players when the count of turns % 5 =
4.

(phase "Trick"

(play (move Pass (then "Switch")))

(end {(if ("HandEmpty" Next) (byScore misere:True))})

(nextPhase "Lead"))}))

(metadata

(graphics {

(piece Foreground "Square1" image:"A" fillColour:(colour Hidden)

edgeColour:(colour Red) scale:0.7)

(piece Foreground "Square2" image:"A" fillColour:(colour Hidden)

edgeColour:(colour Yellow) scale:0.7)

...

(piece Foreground "Square35" image:"8" fillColour:(colour Hidden)

edgeColour:(colour Blue) scale:0.7)

(board Placement scale:5)

(stackType None)

})

)

Rank and Suit are illustrated by number and color, in this game. Those two
variables are easy to set to whatever the user desires. The winner of the trick
becomes the new leader, which is defined off-screen in “Switch”. If the game
is done, the player with the minimum score wins overall. Otherwise, the cycle
begins again, with the new leader leading. To get the cards to look appropriate,
a metadata section must specify how each looks. I generally just choose one of

26

Figure 2: Agram In Progress

‘"A2345678910JQK" to represent the suits, and use red, fuchsia, light blue, and
black to represent hearts, diamonds, clubs, and spades respectively.

Along with Agram, I’ve implemented five other games of hidden information
in Ludii, and three deterministic ones. Multiple use a standard 52-Card Deck:
I would recommend copy-pasting the metadata section and tweaking it to one’s
aesthetic preferences, if one wanted to implement another card game in Ludii.

6 AI

6.1 Imperfect Information AI

The tree produced in a game of perfect information branches at decisions, like
that for a deterministic game, as well as at chance nodes, where information is
revealed. In such a tree, a given node cannot be fully evaluated, but we can
average across all possible chance nodes to get an expected value. An exhaustive
search of all possibilities would return a Nash Equilibrium, and a good approx-
imation can be found from a random partial search, like with deterministic
games.

In Artificial Intelligence: A Modern Approach, authors Russell and Norvig
show that a brute force Tree Search can fully solve a game of imperfect informa-
tion in O(bmn

m) time, where b is the amount of legal moves, m is the maximum
amount of moves in a game, and n is the amount of possible outcomes from the
random event, in this case, the number of cards. This additional exponential

27

factor makes games of chance particularly difficult for classical game-playing
algorithms, such as Alpha-Beta Search. Monte-Carlo Tree Search, on the other
hand, does not try to fully explore the tree, and can search a random permuta-
tion of cards for each iteration (a process called determinization). The first prac-
tical implementation of this style of algorithm came in 2001, with Matthew L.
Ginsberg’s “GIB Player”, which played bridge with “roughly equivalent strength

to human experts”
[21]

.

There are two possible methods for determination. The “lazy” method is
to assign each chance event as it occurs, and ignore all unknown information.

This can be effective in single-player puzzles
[21]

, but generally falls short in
multiplayer card games. The standard method is to establish every possible
unit of information randomly at outset, and to proceed as if it is a game of
perfect information. This strategy, in addition to Bridge, has been utilized in
Cardstock, and effectively utilized in many stochastic games, including Phantom
Go and Magic: The Gathering.

6.2 Information Set Determinization

We need to make a few tweaks to our MCTS pseudocode to accommodate hidden
information in the above way. To start with, we need a function that assembles
a set of all components that are currently hidden, then replaces each with a
randomly selected piece.

def determinize(GameState game):

is = HashSet(game.pieces())

for (location l in game.boardLocations()):

if (!game.isSupposedToBeHidden(l) or game.isEmpty(l)):

is.remove(l)

if (!game.isEmpty(l)):

ps[pieceAt(l)] = null

for (location l in game.boardLocations()):

if (game.isSupposedToBeHidden(l)):

p = is.popRandom()

game.removePieceAt(l)

game.placePieceAt(p, l)

This method must only be called on the initial move, after the UCT search
makes its decision, but prior to the playout. There are many undefined functions
above, to the ill-defined “GameState”. These functions are all possible (although
often by different names) operations on the overarching Game data structure
in Ludii, which we explored in the previous chapter, although they follow a
much different and more complex hierarchy of instructions. This loops through
locations, not pieces, has no effect on components that are not supposed to be

28

hidden, and guarantees a possible outcome. There are some particular cases
where this approach is suboptimal, such as the Monty Hall Problem. It doesn’t
factor in how likely each option is, assuming a uniform distribution, when in that
case one option has twice the probability of the other. With only two options,
and a very weighted die, not having that knowledge of dependent probabilities
can be difficult. However, most card games have a far larger branching factor
than the Monty Hall Problem in both chance and choice nodes, and this much
larger outcome space allows this uniform-probabilities assumption to work well
in practice. The full method, written in Java, is available at MCTSStoHi.java
in the attached Github repository.

6.3 AI Performance in Card Games

For each of my games, I ran 96 simulations. 96 is divisible by 4!, so this balances
for n’th player advantage in four player games in a way that 100 games couldn’t.
In each, “Clairvoyant” is the standard Ludii UCT AI, and “Honest” is the agent
linked in the github repository. “CardStock” is the default MCTS agent used
in CardStock. All AIs were given one second of thinking time per round. The
values presented are the average value assigned to each player on average in a
game. All have three or more players, so these values don’t sum to one, but
their relative sizes demonstrate how well the various AIs did over time.

0 24 48 72 96
0

0.25

0.5

0.75

1

Instances

W
in
s

Golf With Clairvoyant, Honest, and Random

Random
Clairvoyant

Honest

Golf is the simplest game tested. You draw and then discard a card each
turn, and whoever has the lowest score wins. The two Monte Carlo Tree Searches
are basically equivalent here, both discarding the highest possible card on each
turn, but this is a good barometer. Ultimately, the Honest method won by a

29

hair, but the margin is slim enough that we can safely conclude the two play
similarly in very simple games of chance.

0 24 48 72 96
0

0.25

0.5

0.75

1

Instances

W
in
s

98 With Clairvoyant, Honest, and Random

Random
Clairvoyant

Honest

98 poses an interesting problem. Each turn, you add the value of the played
card to a grand total, with kings setting the value to 98, 10s having value -10,
and Queens/Jacks having value zero. The first player to bring the score above
98 loses: there is no direct winner. This means our heuristic has much less to
go off of: nevertheless, the deterministic model played well, competitively with
the clairvoyant Ludii AI.

0 24 48 72 96
0

0.25

0.5

0.75

1

Instances

A
v
g.

P
la
ye
r
R
an

k

Hearts With Clairvoyant, Honest, and Random

Random
Clairvoyant

Honest

30

Honest Clairvoyant Random
Agram 0.49 0.69 0.41
Golf 0.74 0.72 0.04
98 0.59 0.66 0.41

Hearts 0.71 0.78 0.29
Bottle Imp 0.72 0.80 0.25

Table 2: MCTS Competition

Hearts is a complex and popular trick-taking game with a standard 52-card
deck. Each of the 13 Hearts is worth -1 point, and the Queen of Spades is worth
-13 points. The winner is the player with the highest score, unless someone has
amassed all 26 points, in which case they win. This game’s graphics section has
my representation of a deck of cards in Ludii, which I recommend to anyone
who needs one, as writing it by hand was arduous. This is the most complicated
game that I implemented, the only one that I’ve played frequently with non-
computer scientists. I was expecting the added complexity to hurt the honest
MCTS’s chances, but the method absolutely played competitively.

In general, it appears that a deeper and more complex strategy improves
the Honest MCTS’s chances, likely because that is such a disservice to a random
player. While this model doesn’t beat the Clairvoyant model dramatically in
any context, it played well and honestly, which means that such a thing in a
GGS is possible.

7 Conclusion

Games with incomplete information can exist in a General Game System, and
the Monte-Carlo Tree Search algorithm which allows for General Game AIs
can make strategic moves without clairvoyance, in a way that is competitive
with clairvoyant players. I have done this for “Ludii”, a General Game System
released in 2020, and demonstrated that this happens in “CardStock”, a General
Card Game System. Over the course of this paper, we have learned a great deal
about how games are defined, how AIs use trees, and context-free grammar.

AIs must grapple with incomplete information any time they take on a
remotely realistic problem, and usually the option to cheat will not exist. This
style of model is much more capable in more situations, and Information-Set
Determinization is a useful tool for any Stochastic AI that sets out to solve
arbitrary problems.

31

8 Sources

1. http://ludeme.eu/index.html

2. “Go master Lee says he quits unable to win over AI Go players”, Yoo
Cheong-mo, November 27 2019, https://en.yna.co.kr/view/AEN20191127004800315

3. “Ludii Games”, Noah Morris, July 21 2023, https://github.com/brimstonetrader/
LudiiGames

4. “Winning Ways for your Mathematical Plays”, John Conway & Elwyn
Berlekamp & Richard Guy, 1982, https://archive.org/details/winningwaysforyo02berl

5. “Non-Cooperative Games”, John Nash, 1951, https://web.archive.org/web/
20150420144847/http://www.princeton.edu/mudd/news/faq/topics/Non-Cooperative
Games Nash.pdf

6. “Ludii Game Logic Guide”, Eric Piette & Cameron Browne & Dennis
Soemers, https://ludii.games/downloads/LudiiGameLogicGuide.pdf

7. “RECYCLEd CardStock”, Mark Goadrich, 2018, https://cardstock.readthedocs.io/
en/latest/index.html

8. “A Practical Introduction to the Ludii General Game System”, Eric
Piette & Cameron Browne & Dennis Soemers & Matthew Stephenson, 2019

9. ”Ludii - The Ludemic General Game System”, Eric Piette & Cameron
Browne & Dennis Soemers & Matthew Stephenson & Chiara F. Sironi & Mark
H. M. Winands, 2020

10. “General Board Game Concepts”, Eric Piette & Cameron Browne &
Dennis Soemers & Matthew Stephenson, 2021

11. “Ludii Language Reference”, Eric Piette & Cameron Browne & Dennis
Soemers, May 16 2023, https://ludii.games/downloads/LudiiLanguageReference.pdf

12. “Ludii and XCSP: Playing and Solving Logic Puzzles”, Eric Piette &
Cameron Browne & Dennis Soemers & Matthew Stephenson, August 23 2019,
https://cris.maastrichtuniversity.nl/ws/portalfiles/portal/123479428/Soemers-2019-
Ludii-and-XCSP-Playing-and.pdf

13. “CardStock”, mgoadrich, https://github.com/mgoadric/cardstock

14. “GGP in Ludii”, brayo303, https://github.com/brayo303/GGPinLudii

15. “Ludii AI Dev”, z5164964, https://github.com/z5164964/LudiiAIDev

16. “Ludii Stuff”, mgrider, https://github.com/mgrider/ludii-stuff/ tree/-
main

32

17. “Final Year Project”, schererl, https://github.com/schererl/FinalYearProject/
tree/main/src

18. “Ludii Example AI”, Ludeme, https://github.com/Ludeme/LudiiExampleAI

19. “Improving Solvability for Procedurally Generated Challenges”, Mark
Goadrich & James Droscha, May 26 2019, https://arxiv.org/pdf/1810.01926.pdf

20. “Understanding the Success of Perfect Information Monte Carlo Sam-
pling in Game Tree Search”, Jeffrey Long & Nathan R. Sturtevant & Michael
Buro & Timothy Furtak, https://webdocs.cs.ualberta.ca/ nathanst/papers/pimc.pdf

21. “Determinization and information set Monte Carlo Tree Search for the
card game Dou Di Zhu”, Daniel Whitehouse & Peter I. Cowling & Edward J.
Powley, https://www.researchgate.net/publication/224259865

22. “On Numbers and Games”, John Conway, https://senseis.xmp.net/?OnNumbersAndGames

23. “Imperfect-Information Game AI Agent Based on Reinforcement Learn-
ing Using Tree Search and a Deep Neural Network”, Xin Ouyang & Ting Zhou,
https://www.mdpi.com/2079-9292/12/11/2453

24. “Hidden Information General Game Playing with Deep Learning and
Search”, Zachary Partridge &Michael Thielscher, https://cgi.cse.unsw.edu.au/ mit/-
Papers/PRICAI22.pdf

25. “General Game Playing with Imperfect Information”, Michael Schofield
&Michael Thielscher, https://www.jair.org/index.php/jair/article/download/11844/26543/22599

26. “Monte Carlo Tree Search for games with Hidden Information and Un-
certainty”, Daniel Whitehouse, https://core.ac.uk/download/pdf/30267707.pdf

27. https://www.zillions-of-games.com/supportedFAQ.html

28. https://web.archive.org/web/20220323054404/http://logic.stanford.edu/classes/cs227/2013/readings/gdl spec.pdf

33

