
Combinatorics of Rotationally Symmetric Grid

Regions

Noah Morris

March 8, 2023

1 INTRO

1.1 INSPIRATION

Sudoku was invented by Howard Garns, a modest architect from Indiana

who died a decade before anyone attached his name to it. His coworkers, in

interviews conducted after his death, noted that he would create obtuse number

crosswords based on nines on the company’s drawing boards, seemingly as a

game. They only caught brief glimpses of it; he usually tried to hide it from

people. He sent some in to a local magazine anonymously, Dell Pencil Puzzles

and Word Games, but sought neither credit nor profit in his lifetime[1].

The puzzle became popular in Japan, rechristened “Sudoku”, by the pub-

lisher Nikoli, which publishes many similar pen-and-paper logic games. They

heard about it from Dell, under the name “Number Place”. You could safely

find Sudoku throughout much of Japan by the late 1980s, but it didn’t take root

in the rest of the world until the 21st century, when Wayne Gould, a retired

1

judge from New Zealand, spent six years on an algorithm that generated them,

and started offering unique puzzles to newspapers across the world for free, with

solutions hosted at his website. His Sudoku books became very popular, selling

like hotcakes to an enthusiastic public. He was named one of ”The World’s Most

Influential People” by TIME in 2006[2].

Sudoku is, at its core, a game of deduction that asks a solver to recreate a

mathematical structure from an incomplete set of elements within it. This set

of elements consists of nine numbers, meaning each square of the grid is deduced

to be one of nine elements. This makes Sudoku a nonary-determination puzzle

on a latin square, the only nonary-determination puzzle that I am aware of.

It would be fair to state that Sudoku has been appropriately considered, at

this point, from a mathematical perspective, but it is far from the only pencil-

and-paper logic game to involve unraveling a full, recognizable mathematical

structure from an incomplete set of hints. The puzzle I have chosen to focus

this project around, Galaxies, uses as its underlying structure a grid partitioned

into rotationally symmetric regions. They were also popularized in Japan thanks

to Nikoli, although by a different name[3]. I first came across them in Simon

Tatham’s Puzzle Pack [4], and over Covid I became deeply addicted to them.

My goal in this project is to understand what’s going on with these puzzles, so

that the thrall they maintain over me may at least fall within my purview.

1.2 TERMINOLOGY

This paper is fundamentally about grids, like this one.

2

A nxn grid is a two-dimensional square array of length and width n.

In this project, the interior squares, of which there are n2, will be referred

to as cells. A cell is located at an index, which is a tuple denoting its row

and column. The “first” cell, for us, will be that cell located at (1, 1), or,

[c1 @ (1, 1)]. The second, [c2 @ (2, 1)], the n2th, [cn2 @ (n, n)]. We can fill in

the above grid like

(1,3) (2,3) (3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

.

This is the same as how we notate elements of a matrix; in fact, we will

sometimes write partitions as matrices, with the same indices.

The interior points touching the corners of four cells, of which there are

(n − 1)2, will be intersections. Their indices are the mean of the indeces of

all four of their neighboring squares. Because we started indexing at the top

left, let intersection i touch cell c at (x, y) from the southeast. Then, i’s index

is (x+ 1
2 , y +

1
2). Like so:

3

(32 ,
5
2) (

5
2 ,

5
2)

(32 ,
3
2) (

5
2 ,

3
2)

.

The lines connecting two intersections, or dividing two cells, of which there

are 2(n)(n−1), will be gridlines. They generate their indeces in much the same

way. It is notable that, for j, k ∈ N | j < n, k ≤ n, vertical lines are located

at (j + 1
2 , k), and for j, k ∈ N | j ≤ n, k < n, horizontal lines are located at

(j, k + 1
2).

1.3 GALAXIES

An unsolved Galaxies puzzle bears some number of centroids. These

can be on cells, intersections, or gridlines. Thus, for an nxn grid there are

(n2) + (n− 1)2 + 2(n)(n− 1) = (2n− 1)2 possible centroid locations. Here is a

sample unsolved galaxies puzzle:

4

To solve this, you must create a full partition of this grid. A partition

means you divide a thing into parts. You will fill in some of the gridlines, so

that cell falls within a distinct region of other cells, fenced off by “on” gridlines.

We will frequently notate this as an nxn matrix, with a value ∈ N for each cell

as determined by which region it falls into, a process illustrated below. Each

region must be 180◦ rotationally symmetric about a centroid, which means that

if you spun it halfway around while holding it in place at the centroid, it would

be the same shape, taking up the same cells.

Below is the solution to the puzzle, as well as its representation in matrix

notation.

=



a a b b c c c

a a b b c c c

d b b b b c e

d f b b c c c

d f b b c c c

d g g g h i i

j g g g h i i



Now, partitioning a grid is very easy, even if you’re making sure there’s

only one centroid per region. To truly solve a Galaxies puzzle, each region of

the partition must be 180◦ rotationally symmetric about a centroid, using

every centroid. In a region R that is rotationally symmetric about a centroid

c at (x, y), there are an even number of cells within the region not housing the

centroid, R∗.

5

R R*

There are three possible cases for the size of the region housing the centroid,

which will be written as (|R| − |R∗|) = h. If the centroid sits on a cell, it

touches one cell only, and h = 1. If the centroid is on a gridline, it touches

two, and h = 2, and in the same way on an intersection h = 4. Further,

for every cell [g @ (a, b) ∈ R∗], there exists a cell [h @ (c, d) ∈ R∗], for which

(a+c
2 , b+d

2) = (x, y). We will use this as the definition of rotational symmetry.

We will notate half of the number of cells R∗ of a symmetric region has with λ.

The concept is easier to understand visually. Two of the below shapes are

symmetric, two are not.

The symmetric shapes are blue and brown. You could manually find the

centroid, and affirm a correspondence for both, but for now just imagine rotating

them 180◦. In this case, λ of the blue square is zero, and λ of the brown zigzag

6

is 2.

In the context of grids, which is distinct from the case earlier, with integers,

we define a partition as a assignment of cells into non-empty regions, in such

a way that every cell is included in exactly one region. In addition, within 2D

space, groups are connected, meaning there exists a path crossing adjacent

cells fully contained within the region, for every pair of cells within the region.

Each region is surrounded by gridlines which are on, which we will call walls,

but between cells of the same region they are off, or, lawns. This nitty-gritty

definition makes it seem unappealing, pedantic, but the intuition behind this is

not very difficult to understand, and the process of solving doesn’t really feel like

math. We just need to think of them like this if we want to count, categorize,

generalize, or make them.

The goal of this project is to be able to generate a lot of these with an

algorithm. To begin with, we’ll need to figure out how many ways there are

to partition a nxn grid, or at least figure out how they develop, acknowledging

that the sequence grows exponentially, and somehow get a whole bunch of par-

titions. Then, we’ll need to somehow make sure all its regions are rotationally

symmetric, and find our centroids. Then we’ll have Galaxies! This project will

be accomplished in Python, and we will go through each algorithm manually,

at close having some nice puzzles.

2 nx1

2.1 THE FIRST DIMENSION

How would we do this for an nx1 grid? Everything is 180◦ rotationally

symmetric here, so we’ll ignore that for now. A helpful jumping off point for

7

categorizing 1-dimensional grids is to begin by thinking of integers.

A partition of an integer n is a list of integers [a1, ..., am] |
∑m

i=1 ai = n.

Figuring out how many partitions there are for large values of n is very hard

when order doesn’t matter, when partitions like [2,1] and [1,2] are equivalent.

In galaxies, order does matter. This is clear when dealing with 2-dimensional

puzzles: if regions get rearranged, the puzzle becomes clearly different, and

possibly invalid. In sum,

̸=
.

Let’s count the first few partitions manually.

1 can be [1].

2 can be [2], or [1, 1].

3 can be [3], [1, 2], [2, 1], [1, 1, 1] (Pictured below).

4 can be [4], [1, 3], [3, 1], [2, 2], [1, 1, 2], [1, 2, 1], [2, 1, 1], [1, 1, 1, 1].

1, 2, 4, 8. The simplest function that could model this is 2n−1. Let’s prove

that this is true by drawing a bijection partitions of integers to partitions of nx1

grids, and counting them explicitly.

The partitions of the 3x1 grid look like

There are 2 gridlines in the grid for all of those partitions. For any n ∈ N ,

there will be n − 1 gridlines in the nx1 grid. Each of these gridlines can be

turned on or off, meaning there are two possible states for each one. Each is

totally independent of the others, so we can count all of them by multiplying 2

by itself n− 1 times, or, calculating 2n−1. Thus, each list of numbers adding up

8

to n can be represented with a binary string of length n−1, with each 1 meaning

that the previous region has concluded. So, for any sequence of size n consisting

of zeroes and ones (these will be henceforth referred to as bit strings), we can

generate a solved 1-dimensional galaxy of size n−1, converting zeroes to lawns,

and ones to walls.

2.2 AN ASIDE ON ROTATIONAL SYMMETRY

A lot of what will follow deals with general grid partitions, ignoring the sym-

metry requirement. The reason for this is that 180◦ rotational symmetry gen-

eralizes across dimensions, and can be accounted for quite easily. Let’s take a

regular old cube, like

(1,1,1) (3,1,1)

(3,3,3)(1,3,3)

(1,3,1)

(3,1,3)

Suppose this cube exists on three different 3x3 grids, which have been

stacked on top of each other. We could fan the the three grids out methodically,

preserving the order of the cells, and represent the cube on a 2-dimensional 9x3

grid, like

This form is 180◦ rotationally symmetric, although not connected and not

containing its center. We can condense this form further, into one dimension,

by a similar process of rearranging, onto a 27x1 grid.

9

Instead of indeces denoted as tuples, like (x, y) it now makes more sense

to have integer indices, calculated for a newly 1-dimensional [c @ (x, y)] like

i2D→1D(c) = (n ∗ y) + x. We know that this shape used to be rotationally

symmetric. So, we know:

S R ∈ G | [c(R) @ (a, b)]

Suppose we have a region in a valid galaxy such that the center of the

region is located at the index (a, b).

∀ [j @ (x, y)] ∈ R∗,

For every cell j that is located at the index (x, y) in the part of the region

that does not touch the center,

∃ [k @ (v, w)] ∈ R∗ | x+v
2 = x, y+w

2 = b

there exists a cell k, also in the part of the region that does not touch the

center, for which the tuple composed of the average of the x-values and the

average of the y-values between the two cells is the center.

The method of turning indeces to integers between 1 and n2 by defining

the index of c as i(c) = (n ∗ y) + x gives a unique index to all cells, but let’s

arbitrarily define a cell’s ”outdex” solely based on its region, and relationship

with its centroid. We’ll use a semicolon instead of the at sign. An outdex

is calculated for x ∈ R by i(x) − i(c(R)). The below region is marked with

outdexes.

10

32

-1 0 1

-2-3

∃ R ∈ G | [i(R) @ (a, b), o(R) ; 0]

With that in mind, let’s suppose that there exists a region in a valid galaxy

such that the center of the region is located at the index i = (a, b), and outdex

o = 0.

∃ [u @ (x, y), u ; q] | (x− α, y − β) = (a, b). q = nβ + α

Let there then also exist a cell u at index (x, y) such that x minus some

value α is a and y minus some value β is b. The outdex of u is gonna be nβ+α.

∃ [v @ (s, t), v ; p] | s+x
2 = a, t+y

2 = b.

Because we know R is rotationally symmetric, we know that there exists a

cell v at index (s, t) and outdex p such that the two indeces average out to the

center.

s+a+α
2 = a, t+b+β

2 = b → (s, t) = (a− α, b− β).

From a while ago, we know that (x, y) = (a+α, b+β), so we can substitute

that in and quickly solve for s = (a− α) and t = b− β. With our formula from

earlier for calculating outdex, we can conclude from this that

p = n(−β) + (−α) = −q.

So, for a region to be 180◦ rotationally symmetric, its one-dimensional

condensed form must be palindromic, or, the same forward and backward. The

below algorithm generalizes beyond forms with binary states, by this same logic.

11

def is_it_rotationally_symmetric(bitstring):

gnirtstib = bitstring[::-1]

#[::-1] reverses a string in python

if gnirtstib == bitstring:

return True

else:

return False

print(is_it_rotationally_symmetric("100101001")) returns True

print(is_it_rotationally_symmetric("100101101")) returns False

The converse is not true, as regions whose 1-dimensional forms have no

gaps are always palindromic, even when not symmetric. Nevertheless, this cor-

respondence, and understanding, will help us enormously as we go on.

→

3 2x2

3.1 THE SECOND DIMENSION

This is more difficult. Connection of regions becomes a bigger issue. The

best 2# gridlines can be is a remedial upper bound on the total number of par-

titions. There’s trivially one valid partition for a 1*1 grid, but potentially

22n(n−1) = 16 partitions for a 2 ∗ 2. They are detailed on the next page, with

the eight valid galaxies on top, then the valid partitions. The final four are

merely arrangements, similar to this one.

12

3
1
4
2

The reason that we do not count this and other arrangements of its ilk as

partitions is that they are inherent contradictions. Consider a wall between two

cells as a designator that ”these two cells do not share a group”, and a lawn as

a designator that ”these two cells do share a group”.

Without loss of generality, the above arrangement is stating that both “3

in group with 1 in group with 2 in group with 4 → 3 in group with 4” and “3

not in group with 4”, and is contradicting itself. Thus, we have:

3.1.1 GALAXIES

3.1.2 PARTITIONS

3.1.3 SILLY SQUARES

With the remedial geometric intuition that the above argument holds for

larger grids (and the acknowledgement that a validly partitioned grid with n2

cells can be appreciated as (n− 1)2 validly partitioned 2x2 grids) and not much

else in mind, we can posit

The Simple Grid Conjecture: A grid is partitioned when none of its

13

intersections touch only one wall.

We will attempt to prove this later.

a a

a a

a a

a b

a a

b a

a a

b b

a a

b c

a b

a a


a b

a b

a b

a c

a b

b b

a b

c b

a b

c c

a b

c d



4 3x3

4.1 METHOD A

There are 12 gridlines on a 3x3 grid. This means that there cannot be more

than 4096 partitions of such a grid. Let’s put numbers on our gridlines like so:

8

6

5

7

9

10

4

3

1

11

12

2

We can let the i’th element of a given 12-element bit string represent the

gridline in the above diagram marked as i. Here is an example.

[011011001110] =

14

Let’s just make a list of every 12-bit string.

figaro = []

for i in range(4096):

s = bin(i)[2:]

while len(s) != 12:

s = "0" + s

figaro.append(s)

print("There are " + str(len(figaro)) + " elements of this list right

now.")

There are 4096 elements of this list right now.

print("The number ’151’ in base-10 translates to " + bin(151)[2:] + " in

binary.")

The number ’151’ in base-10 translates to 10010111 in binary.

print("The 152nd element of this list containing zero is " + figaro[151]

+ ".")

The 152nd element of this list containing zero is 000010010111.

This algorithm tells us all possible 3 ∗ 3 grid partitions, as well a bunch of

binary strings that map to invalid partitions, violating the Simple Grid Conjec-

ture, and leaving an intersection connected to only one gridline. Let’s get rid

of those, checking that [1,2,3,4], [4,5,6,7], [7,8,9,10], and [10,11,12,1] all do not

sum to 1.

for i in range(len(figaro)):

grid = figaro[i]

for j in range(4):

if (int(grid[(3 * j) + 0]) + int(grid[(3 * j) + 1]) +

int(grid[(3 * j) + 2]) + int(grid[((3 * j) + 3) % 12]) == 1):

figaro[i] = "blunt"

15

treebytree = []

for i in range(4096):

if figaro[i] != "blunt":

treebytree.append(figaro[i])

print("There are " + str(len(treebytree)) + " elements of this list

right now.")

Above, we iterate through each of the 4096 strings, checking that the slices

all do not add to one. If at least one does, the string is removed from the list.

This is because the corresponding grid violates the Simple Grid Conjecture. The

list treebytree contains every possible partition. The code’s output is:

There are 1442 elements of this list right now.

4.2 METHOD B

This total can also be found by hand.

Suppose a five-cell polyomino, with four cells entirely surrounding one cen-

ter cell. There are four total interior gridlines to this shape, allowing for only

16 possible partitions, which are as follows.

16

Any corner cell (which has not yet been counted) has three consequential

neighbors: the two cells adjacent to it, and the center cell. Each of these three-

cell regions can be in one of three important states:

Case 2. Entirely Grouped (One Group, 2 Lawns)

Case 3. Partially Separated / Partially Grouped (Two Groups, 1 Wall, 1 Lawn)

Case 4. Entirely Separated (Three Groups, 2 Walls)

A corner cell whose neighborhood (defined as a standard Moore neighbor-

hood, all cells orthogonally or diagonally adjacent to a given cell) aligns to Case

2 will have 2 possible groupings - with the group it is surrounded by, or alone.

Case 3 implies 3 possible groupings, with the group horizontally adjacent, ver-

tically adjacent, and alone. Case 4 implies 4 possible groupings, with the group

horizontally adjacent, vertically adjacent, alone, and the fourth choice of merg-

ing the two groups it is adjacent to. Thus, we can fill in the above diagram with

the numbers that their cases align to.

17

4 4 4 3 3 3 3 4

3 3 4 3 4 4 3 4

3 2 2 3 4 3 3 4

4 3 3 4 3 2 2 3

2 2 2 3 3 3 3 2

3 3 2 3 2 2 3 2

2 2 4 4 3 3 3 3

2 2 4 4 3 3 3 3

We must multiply together the outcomes of the corner spaces to get the

total amount of 3x3 partitions of a given cross formation. Once we add all 16

cross formation counts together, We will have the total number of possible 3x3

partitions, if we assume a grid region can only be invalid by violating the Simple

Grid Conjecture. Thus:

(16)+ (256)+ ((2) ∗ (81))+ ((4) ∗ (36))+ ((4) ∗ (72))+ ((4) ∗ (144)) = 1, 442

4.3 TOROIDALITY

To show n=3 → 1442, we would need to prove the Simple Grid Conjecture holds

not just ”if” no intersections are lonely, but ”if and only if”. I will not do this.

Envision the smallest grid region that could exist on both sides of a gridline.

If its height is 2 or less, it will have to bend back on itself, causing a ”lonely

intersection”, violating the conjecture. Same goes for width. Thus, the smallest

possible group that could border itself whilst bearing no lonely intersections will

18

have height and width 3. This region is pictured below, along with its seven

like-minded associates.

Subtracting these off from the main total gives 1434 grid partitions for

n = 3. We will be calling regions that are symmetric but do not contain their

centers toroidal. This means that they completely surround some natural

number of interior cells of a separate group. There exist valid toroidal groups,

five in a 3x3 grid, below. One, the one on the left, is symmetric.

These grids are fine, but they cannot be notated as proper Galaxies, as

they do not include their center. They count as valid partitions, so they’re cool

for now. This leaves 1434 = 2*3*239 partitions of a 3x3 grid.

19

5 4x4

5.1 ANOTHER DULL OUTDEX PROOF

Suppose a valid galaxy of length and width n, that is, a partitioned grid into

180◦ rotationally symmetric regions. Suppose we notate it by least-to-greatest

group membership, creating a matrix of integers instead of letters. To draw a

specific example without loss of generality,

=


1 2 3 3

2 2 3 4

2 3 3 4

5 5 5 5



We can think of a partitioned region as an ordered list of indeces, that

forms a subset of the list of all possible tuples of integers from 1 to n. If we

are given a region, in this list format, that we know is rotationally symmetric,

finding the centroid is as simple as taking the mean of both sides of the tuples

independently.

Let’s call a general region, or list of tuples, R, and let R be rotationally

symmetric. Recall that each cell [g @ (a, b)] ∈ R∗ which is centered around

centroid [c @ (x, y)] ∈ R has a ”mirror image” [h @ (c, d)] ∈ R∗ for which

(a+c
2 , b+d

2) = (x, y). Lets split R into three lists, s1, c0, s2, where c0 contains

R − R∗, s1 contains those remaining cells with negative outdexes, and s2 con-

tains those cells with positive outdexes. Let c0 = R−R∗, a list of one, two, or

four tuples [(a1, b1), ...(am, bm)] for which (
∑m

n=1 an

m ,
∑m

n=1 bn
m) = (x, y).

20

We learned a while ago that a cell [g @ (x + α, y + β)] ∈ R∗ means that

there must also be a cell [h @ (x−α, y−β)] ∈ R∗. Thus, g and h are in separate

groups, and |s1| = |s2| = λ(R). Further, if the combined outdex of s1 = w, for

some w, then the outdex of s2 = −w, and the mean of all elements has an

outdex of zero, which means it is at the center of the region.

Further, if we suppose g is the k’th term in s1, then there are k − 1 terms

with positive outdexes before g in s1, and λ(R) − k terms after. Because each

of these corresponds to a term of similar outdex, but different sign, the reverse

is true for s2. That is, h is the (λ(R) − k)’th term in s2, and there are k − 1

terms after it. This will influence the filter algorithm.

5.2 n=4, COMPUTER

Let’s put numbers to the intersections on the 4∗4 grid. There’s 24 total gridlines,

as shown below.

7

19

23

5

8

17

20

6

18

11

21

9

12

24

15

3

10

1

4

13

16

2

22

14

Gridlines 1-20 can be toggled to lawns and walls in 125 ways. This is because

[1,2,3,4], [5,6,7,8], [9,10,11,12], [13,14,15,16], [17,18,19,20] all have 12 possible

partitions (by our 2x2 section), and none of the 125 combinations violate the

Simple Grid Conjecture immediately. Some leave lonely intersections with one

remaining unassigned gridline, or empty intersections but for the unassigned.

In both situations, the unassigned gridline has only one possible case. If there

21

are two or three walls at its intersection, there are two possible cases. With

this, we can write some Python code.

qs = [[0,0,0,0], [0,1,0,1], [1,0,1,0], [1,1,1,1], [0,0,1,1], [0,1,1,0],

[1,1,0,0,], [1,0,0,1], [1,1,1,0], [1,1,0,1], [1,0,1,1], [0,1,1,1]]

#All 2x2 grids

fours = []

order = [2,5,8,

3,9,12,

7,10,16,

11,14,17]

#The final gridlines’ neighbors, organized.

for i in range(12 ** 5):

proxylist = [qs[i % 12] + qs[int(np.floor(i / 12)) % 12] +

qs[int(np.floor(i / 144)) % 12] + qs[int(np.floor(i / 1728)) %

12] + qs[int(np.floor(i / 20736))]]

#all unique lists of five elements of q. There are 12^5 total.

for j in range(4):

b = len(proxylist)

if (proxylist[0][order[(3*j)]] + proxylist[0][order[(3*j)+1]] +

proxylist[0][(3*j)+2]) == 0:

for k in range(b):

proxylist[k].append(0)

#When all neighboring gridlines are lawns, the last remaining

gridline

#must also be a lawn.

22

elif (proxylist[0][order[(3*j)]] + proxylist[0][order[(3*j)+1]]

+ proxylist[0][(3*j)+2]) == 1:

for k in range(b):

proxylist[k].append(1)

#When one neighboring gridline is a wall, the last remaining

gridline

#must also be a wall.

else:

b = len(proxylist)

for k in range(b):

newlist = proxylist[k] + [0]

proxylist[k].append(1)

proxylist.append(newlist)

#In any other case, the gridline could be either a lawn or a

wall.

fours += proxylist

The final list has length 1, 632, 816(2x2x2x2x3x3x17x23x29). All of these

are possible partitions, but the list might contain invalid regions which border

themselves. Instead of combing through this data and scaling this tactic to our

general case, we will try a totally new algorithm, keeping this number and tactic

in mind.

23

6 nxn

6.1 INSPIRATION

Let’s examine the 2 ∗ 2 case more closely.

There is one way to partition the 1 ∗ 1 grid.

If we add a block on the side, we can either have one group or two. On the

bottom, there are similarly two options. Four total, for a three-cell region, as

follows.

Let’s go back to the n*1 case, and modify it slightly. Picture a line of cells

that’s 2n− 1 cells long, as opposed to n. This region has 22n−2 valid partitions,

as does the below one, with a bend.

for n = 4

26 = 64 partitions

These partitions are very easy for a computer to generate, by modifying

our old brute force algorithm. We’ll write a function that takes any natural

number n, which represents the integer side length of the grid. We want to

make a list composed of all partitions of the region formed by the leftmost

24

vertical nx1 region and the upmost horizontal region, total size of both 2n -

1, and, by what we determined in the first dimension, total partitions = 22n−2

. So we can cleanly iterate, we’ll do it by going first across the top row, then

down the leftmost column. This is what order it will go in for n = 4:

4

3

2

1 5 6 7

This iterates through every number from 0 to 22n−2 in binary. This is still

1-dimensional in terms of how we count it, despite it being a bit long, because

all interior cells have two adjacent neighbors, and both exterior cells only have

one.

def topline(n):

edge = []

for i in range(2**(n-1)):

bitstringofi = bin(i)[2:]

while len(bitstringofi) < (n-1):

bitstringofi = "0" + bitstringofi

frame = [1]

for j in range(n-1):

if bitstringofi[j] == "0":

frame.append(frame[-1])

If zero, lawn.

else:

frame.append(frame[-1] + 1)

If one, wall

edge.append(frame)

25

return(edge)

topline(3)

[[1, 1, 1], [1, 1, 2], [1, 2, 2], [1, 2, 3]]

def firstvert(n, top):

edges = []

toprow = top

frame = []

for h in range(2**(n-1)):

for i in range(2**(n-1)):

frame += toprow[h]

bitstringofi = bin(i)[2:]

while len(bitstringofi) < (n-1):

bitstringofi = "0" + bitstringofi

if bitstringofi[0] == "0":

frame.append(1)

elif bitstringofi[0] == "1":

frame.append(frame[-1] + 1)

for j in range(n-2):

if bitstringofi[j+1] == "0":

frame.append(frame[-1])

If zero, lawn.

elif bitstringofi[j+1] == "1":

frame.append(max(frame) + 1)

If one, wall

edges.append(frame)

frame = []

return(edges)

firstvert(3, topline(3))

26

#[[1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 1, 2, 2], [1, 1, 1, 2, 3],

[1, 1, 2, 1, 1], [1, 1, 2, 1, 3], [1, 1, 2, 3, 3], [1, 1, 2, 3, 4],

[1, 2, 2, 1, 1], [1, 2, 2, 1, 3], [1, 2, 2, 3, 3], [1, 2, 2, 3, 4],

[1, 2, 3, 1, 1], [1, 2, 3, 1, 4], [1, 2, 3, 4, 4], [1, 2, 3, 4, 5]]

Here, we get all bit strings of length 22(n−1), with Python’s convenient

”bin()” function. Then, we cycle through the “frame”, setting elements to the

same or different groups by the index of the bit string. This creates all possible

“frames” of grid partitions, although we might change them later. To see why,

we must go back to the 2 ∗ 2s.

a b c d

There are two possible groups that the cell we place at a could belong

to, while maintaining a valid partition of the entire grid: With the group, and

without, like so.

=

1 1

1 1

1 1

1 2

 →

if (nw == ne) and (nw == sw):

return([nw, (nw+1)])

Cells b and c have the same spread of cases. With the group above, with

the group to the left, or totally alone. We can treat them the same way in our

algorithm.

27

=

1 1

2 1

1 1

2 2

1 1

2 3

1 2

1 1

1 2

1 2

1 2

1 3

 →

if (nw == ne) or (ne == sw):

return([ne, sw, (max([ne, sw]) + 1)])

Now, in the case of d, we’ve got four possible partitions: the three available

to b and c, and to merge b and c into one group. We can just return 0 in the

last case.

=

1 2

3 2

1 2

3 3

1 2

3 4

1 2

2 2

 →

else:

return([ne, sw, (max([ne, sw]) + 1), 0])

To merge, we need access to the whole grid, not just the 2x2 section we’re

analyzing. This is a darn shame: it will increase our function’s runtime dra-

matically. This is why there’s no nice table at the end of the section: doing this

billions of times requires more computational resources than I can muster. If

we want to truly know the number of partitions, theoretically, we must check

it. On seeing 0, we call merge, once we have access to the full list, and set

all values in either group to the minimum index. To make sure we don’t get

our numbering system off, we must subtract one from all indeces above the one

whose group we removed.

28

def merge(gridsofar, ne, sw):

mn = min(ne, sw)

mx = max(ne, sw)

newgrid = []

for i in range(len(gridsofar)):

if gridsofar[i] == mx:

newgrid.append(mn)

elif gridsofar[i] < mx:

newgrid.append(gridsofar[i] - 1)

else:

newgrid.append(gridsofar[i])

return(newgrid)

Now that all cases have been accounted for, if we know the group member-

ship of a cell c’s northwest, northeast, and southwest neighbors, we can figure

out all possible partitions for that region including c within that base partition.

def se(nw, ne, sw):

if (nw == ne) and (ne == sw):

return([nw, (nw + 1)])

elif (nw == ne) or (ne == sw):

return([ne, sw, (max([ne, sw]) + 1)])

else:

return([sw, ne, (max([ne, sw]) + 1), 0])

This puts all pieces together, taking in a northeast, northwest, and south-

east group index, and returning the list of all possible partitions including the

southeastern cell. Considering our ”frame” holds the entire rest of the grid to

its southeast, if we can figure out the right way to call se() (n− 1)2 times, we’ll

have all partitions of a given size.

29

6.2 VISUALIZING OUR INDECES

Keep in mind that computers start counting at zero, so the index of the first

element of a list here is gonna be zero. The framer algorithm, from earlier,

returns all possible top rows and leftmost columns to valid galaxies in matrix

notation. Here’s what it leaves us with:

1 to n

n to 2n− 1

Case

1

Case 2

Okay, let’s look at what we have to recur. The two cases are split, based on

whether they border the first vertical, for practical and uninteresting reasons.

def partition_counter(n):

frames = framer(n)

for j in range(n-1):

dummy = []

for k in range(len(frames)):

frame = frames[k]

stock = se(frame[?], frame[?], frame[?])

for l in range(len(stock)):

if stock[l] != 0:

z = (frame + [stock[l]])

30

dummy.append(z)

else:

frame2 = merge(frame, frame[?], frame[?])

dummy.append(frame2)

frames = dummy

for i in range(n-2):

dummy = []

for k in range(len(frames)):

frame = frames[k]

stock = se(frame[?], frame[?], frame[?])

for l in range(len(stock)):

if stock[l] != 0:

z = (frame + [stock[l]])

dummy.append(z)

else:

frame2 = merge(frame, frame[?], frame[?])

dummy.append(frame2)

frames = dummy

return(len(frames))

On any given loop, we know k and j, which correspond to the index of the

cell we are filling in plus two, or k, j → [c @ (k+2, j+2)]. At this point, the cell

we are filling in has an index on the frame that we can easily find by computing

”len(frame)”. The cell to its west, which we want to put into ”stock” in place of

”frame[sw]”, was the last input cell, ”len(frame) - 1”. However, this only holds

in the case that k ̸= 0, and otherwise the southwestern cell is at n− j − 2. We

must split the code into two cases. The northwestern cell works very similarly,

being n away in the second part, otherwise, at index n−j−1. The northeastern

is reliably n−1 away. We can clean a lot of this, due to python’s handy negative

wraparound indexing.

31

def partition_counter(n):

frames = firstrow(n,firstcol(n))

dummy = []

for c in range(n-1):

for k in range(len(frames)):

frame = frames[k]

firstcell = se(frame[c], frame[1-n], frame[1+c], max(frame))

for l in range(len(firstcell)):

if firstcell[l] != 0:

z = (frame + [firstcell[l]])

dummy.append(z)

else:

frame2 = merge(frame, frame[1-n], frame[1+c])

dummy.append(frame2)

frames = dummy

dummy = []

for m in range(n-2):

for k in range(len(frames)):

frame = frames[k]

nextcell = se(frame[-n], frame[-n+1], frame[-1],

max(frame))

for l in range(len(nextcell)):

if nextcell[l] != 0:

z = (frame + [nextcell[l]])

dummy.append(z)

else:

z = merge(frame, frame[-n+1], frame[-1])

32

dummy.append(z)

frames = dummy

dummy = []

return (len(frames))

TABLE OF VALUES

partition_counter(1) - 1

partition_counter(2) - 12

partition_counter(3) - 1434

partition_counter(4) - 1665869 [4.7 SECONDS TO RUN]

If https://oeis.org/A145835 is to be believed something is

incorrect. Also, I don’t think it’s possible to get this done for

n > 5. Let’s just play galaxies now.

partition_counter(3)

We can use what we’ve done to make an endless supply of galaxies. We

don’t need to iterate through every conceivable galaxy of size n to have some

playable ones, we can just call for a random list of 100,000 at each size of n

that we want. Arbitrarily, let’s say n = 7, 11, 15, as those are the sizes I find

the most fun.

33

7 GALAXIES

7.1 GENERATING STANDARD PARTITIONS

We know how to count galaxies: it will surely be a snap to generate some radom

ones, by using the existing code. Let’s grab some sample partitions. Note that

the ”least to greatest” notation goes along the length of the frame.

def random_partition_of_size(n):

frames = framer(n)

frame = frames[np.random.randint(0, len(frames))]

print(frame)

for j in range(n-1):

frame = frames[k]

stock = se(frame[n - j - 1], frame[(len(frame) - (n+1))],

frame[n - j - 2])

q = np.random.randint(0, len(stock))

if stock[q] != 0:

frame.append(stock[q])

elif stock[q] == 0:

frame = merge(frame, frame[(len(frame) - (n+1))], frame[n - j

- 2])

for i in range(n-2):

stock = se(frame[(len(frame) - n)], frame[(len(frame) -

(n+1))], frame[(len(frame) - 1)])

q = np.random.randint(0, len(stock))

if stock[q] != 0:

frame.append(stock[q])

elif stock[q] == 0:

frame = merge(frame, frame[(len(frame) - (n+1))],

frame[(len(frame) - 1)])

34

return([frames[np.random.randint(0,len(frames))],

frames[np.random.randint(0,len(frames))],

frames[np.random.randint(0,len(frames))]])

Now, my main problem with this code is that it takes four seconds to

generate three partitions for n = 4. Nevertheless, let’s look at what we got.

OUTPUTS

[[1, 2, 2, 3, 4, 4, 5, 5, 5, 5, 2, 6, 5, 1, 6, 6],

[1, 1, 2, 2, 3, 3, 3, 3, 1, 1, 3, 1, 5, 1, 1, 1],

[1, 2, 3, 3, 1, 1, 5, 1, 5, 5, 1, 1, 5, 1, 6, 6]]

DEFRAMED (MANUALLY)

PARTITION1: PARTITION2: PARTITION3:

[3, 4, 4, 5] [2, 3, 3, 3] [3, 1, 1, 5]

[2, 5, 5, 5] [2, 3, 1, 1] [3, 1, 5, 5]

[2, 2, 6, 5] [1, 3, 1, 5] [2, 1, 1, 5]

[1, 1, 6, 6] [1, 1, 1, 1] [1, 1, 6, 6]

Pretty good! We’d want to change this so that it doesn’t calculate every

partition for a given n, but only a certain amount. Then, we’d want to deframe

them, ideally in-house, and re-index the groups. Hmm. Maybe we’d be better

off starting from scratch.

Let’s say we have an empty grid, which we want to partition row by row.

Our first step should be checking the first cell in the row, to make sure it’s not

empty, assigning it to be the first member of a new region if so.

def identity (dg, n, c):

35

if (dg[n*c] == 0):

dg[n*c] = max(dg) + 1

return dg

else:

return dg

We can set the vertical gridlines along the row to lawns or walls randomly.

def vertical (dg, n, c):

for j in range(n-1):

if np.random.randint(1,4) != 1:

if dg[(n*c) + j + 1] == 0:

dg[(n*c) + j + 1] = max(dg) + 1

else:

if dg[(n*c) + j + 1] == 0:

dg[(n*c) + j + 1] = dg[(n*c) + j]

return dg

We can then assign rows of horizontal gridlines, only acting if we find a

lawn.

def horizontal (dg, n, c):

for j in range(n):

if np.random.randint(1,4) != 1:

dg[(n*c) + j + n] = dg[(n*c) + j]

return dg

So now all we need is a managerial mtehod, to call those in the correct

order.

36

def randomizer(n, a):

frames = []

for j in range(a):

frame = [0] * (n*n)

for i in range(n-1):

identity(frame, n, i)

vertical(frame, n, i)

horizontal(frame, n, i)

identity(frame, n, n-1)

vertical(frame, n, n-1)

frames.append(frame)

return frames

That’s much better! Instead of a minute to do a 15x15, it cranks out a

big batch in an instant! We’ve got access to a pretty important additional

variable here that I’ve glossed over: the ratio of walls to lawns. The line “if

np.random.randint(1,4) != 1”, which occurs in both vertical() and horizontal(),

is what decides the ratio. Let’s try to figure out how changing this impacts the

expected value of the maximum of a partition. It’d be nice to be able to predict

this, as enjoyable galaxies usually hover around 3n distinct regions, this number

varying somewhat based on play style and grid size.

The average number of lawns as intended by the random number generator

in the vertical method will be written as l(v). The current code for vertical,

which draws a random number from [1,2,3] and creates a wall in 2
3 of cases, thus,

w(v) = 2
3 | l

w (v)
= 1

2 . If we only consider the first n terms, as designated by

the vertical() method, there should be w(v)n+ 1 groups on average. Horizontal

works differently, not inflicting a binary status, but exclusively growing groups.

Thus, it does not positively impact the number of groups at all. It does, however,

remove n∗l(h) potential cells from what vertical can change. Thus, the expected

37

amount of new groups to come from an iteration of vertical() after the first is

w(v)(w(h)n) + 1. We run this n times, so the total amount of expected groups

is w(v)n+ 1 + (n− 1)(w(v)(w(h)n) + 1) = n(w(v) + 1 + w(v)w(h)(n− 1)).

We want 3n groups, give it a buffer of maybe n
2 on both sides. So, we want

3n = n(w(v) + 1 + w(v)w(h)(n − 1)). With some algebra, we can show that in

this case, 2
wv

− 1 = wh(n− 1). This is actually pretty good news. It means that

we can graph this (with a slider for n). I’m looking for wv = wh, out of laziness.

It appears that this occurs at w = 0.5 @ n = 7, w = 0.4 @ n = 11, and, bucking

what I was hoping would be a great pattern, w = 0.3439 @ n = 15. So we know

what we’re after!

def symmetricizer(frames):

symmetrix = []

for i in range(len(frames)):

frame = frames[i]

m = max(frame)

for j in range(m):

region = []

for k in range(len(frame)):

if frame[k] == j:

region.append(k)

a = np.mean(region)

while len(region) > 1:

if ((region[0] + region[-1]) / 2) == a:

region.pop(0)

region.pop()

else:

frame = [0]

break

if frame != [0]:

38

symmetrix.append(frame)

return symmetrix

This’ll take in a list of lists, and get rid of the ones with asymmetric regions,

and check for toroidality too. I would start making the centroid-finder now, but

it seems we’ve hit a wall set by God: as n grows, the proportion of symmetric

partitions to asymmetric partitions approaches zero. I got some stuff for 7*7s

that passed all my tests, but “symmetricizer(randomizer(11,100000))” returned

nothing. We must change tactics!

7.2 REVISED ENGINE

Let’s start by thinking of this differently. We don’t want to partition row by

row, we should be using a method that allows interesting symmetries to evolve

naturally. Our groups should be different sizes every time, but predictably

random. Our new first step will be to create a gaussian distribution, assigning

intended sizes to regions.

import numpy as np

def gaussian(n):

c = np.random.randint(np.ceil(n - (n ** 0.5)), np.ceil(n + (n **

0.5)))

#We are creating an n*n grid with around c total regions, and c

centroids.

#Those numbers don’t matter too much right now.

stage = n ** 2

mu = stage / c + 1

39

sigma = (mu/2 - 0.3)

gaussian = [0]

#We will decide the intended sizes of our regions via normal

distribution,

#where the mean is the amount of cells divided by the amount of

regions (times

#1.3 bc that worked better in practice), and sigma = n^2/7 (same

deal).

gaussian = np.random.normal(mu, abs(sigma), int(c*1.5))

return(gaussian)

A this function returns a list of about 1.5*n random numbers generated

according to a random distribution with (µ ≈ n + 1, σ = µ
2 − 0.3). I fiddled

with these numbers a lot, and found these to give the best results. Here it is in

action:

gaussian(7) =

array([13.17771841, 7.21201705, 6.52547926, 7.93499612, 6.5501925 ,

8.18675391, 9.95702839, 8.1603684 , 6.76672675, 5.40133441,

6.45472034, 7.5216323 , 3.84928569])

Now we can start on the bulk of our algorithm.

def starsystem(n):

normal = gaussian(n)

realestate = []

for i in range(n):

40

for j in range(n):

realestate.append([float(i), float(j)])

Our normal distribution will by design have a sum larger than n2, but our

grid (which is called ”realestate” here) won’t have room for everyone. We want

this.

regions = []

for k in range(len(normal)):

if len(realestate) == 0:

return regions

r_1 = np.random.randint(len(realestate))

unit = [realestate[r_1]]

cx = unit[0][0]

cy = unit[0][1]

realestate.remove(unit[0])

size = int(normal[k] - 1)

Right now, the center is some random, available cell in realestate. We’ve

gotta always make sure to edit realestate and size, so no regions overlap (inherent

to partitions).

if size%4 == 0:

if ([cx+1, cy+1] in realestate) and ([cx, cy+1] in

realestate) and ([cx+1, cy] in realestate):

unit.append([cx+1, cy+1])

realestate.remove([cx+1, cy+1])

unit.append([cx, cy+1])

realestate.remove([cx, cy+1])

unit.append([cx+1, cy])

realestate.remove([cx+1, cy])

41

cx += 0.5

cy += 0.5

size -= 3

elif size%2 == 1:

if [cx+1, cy] in realestate:

unit.append([cx+1, cy])

realestate.remove([cx+1, cy])

cx += 0.5

size -= 1

We can also have a region with a centroid at a gridline or intersection. We

do this based on the region size’s modulus 2 and 4, which nicely ensures that at

this point our size is an even number.

for l in range(int(np.floor(size/2))):

if len(realestate) == 0:

return regions

options = get_neighbors(unit, realestate, cx, cy)

Now we’ve got a list of all elements we could grow into, although we need

to figure out the mirror image of whatever we choose, whatever it is is definetely

available. It is easy for a region to have no further options before it’s reached

its intended size: this is why our gaussian was larger than intended. Now, we

must write ”getneighbors”.

def get_neighbors(unit, realestate, cx, cy):

options = []

for i in range(len(unit)):

x = unit[i][0]

y = unit[i][1]

if (not ([x+1,y] in unit)) and ([(2*cx)-x+1,(2*cy)-y] in

42

realestate) and ([(2*cx)-x-1,(2*cy)-y] in realestate):

options.append([unit[i][0]+1, unit[i][1]])

if (not ([x, y+1] in unit) and ([x, y+1] in realestate) and

([(2*cx)-x, (2*cy)-y-1] in realestate)):

options.append([unit[i][0], unit[i][1]+1])

return options

This function takes in:

- unit - the region so far

- realestate - all remaining available cells in the grid

- cx, cy - the coordinates of the center of the region

To figure out all possible ways the region could grow while remaining sym-

metric, we go through every cell in the region, and check if

- a. the cell to its right/up is not yet part of the region. We don’t need to

check left/down, as part b handles that.

- b. if (a = True), True if both cell [c @ (x,y)] and [d @ (2cx - x, 2cy - y)]

are available.

The function returns all cells found by part a. We can use that to find its

symmetric ”mirror image” once we get back to the larger function, so we don’t

need to return the one we checked in part b, since we know it’s fine. Now we

can finish ”starsystem(n)”

if len(options) > 0:

r_2 = (l+len(realestate)) % len(options)

mirror = options[r_2]

rirrom = [(2*cx) - mirror[0], (2*cy) - mirror[1]]

if (mirror in realestate) and (rirrom in realestate):

43

unit.append(mirror)

realestate.remove(mirror)

unit.append(rirrom)

realestate.remove(rirrom)

regions.append(unit)

return(regions)

If we have options, ”(l+len(realestate)) % len(options)” pseudorandomly

picks one, then we append it and its mirror image to the region. If we don’t,

we try again. Once the size iterator gets to zero, we return whatever region we

have. We can’t guarantee that it’ll be the size we wanted (real estate’s out of

control these days), but we can promise it’s symmetric.

At close, this should be mostly partitioned. Maybe a couple blank spots

here and there. Let’s fill in the rest.

def fillinthe(rest, n):

dummy = []

for i in range(n):

for j in range(n):

dummy.append([float(i),float(j)])

#realestate by a different name.

for i in range(len(rest)):

region = rest[i]

for j in range(len(region)):

dummy.remove(region[j])

#We’ve got everything that was left over.

44

while len(dummy) > 0:

x = dummy[0][0]

y = dummy[0][1]

if ([x,y+1] in dummy) and ([x+1,y] in dummy) and ([x+1,y+1] in

dummy):

rest.append([[x,y],[x,y+1],[x+1,y],[x+1,y+1]])

dummy.remove([x,y])

dummy.remove([x+1,y])

dummy.remove([x,y+1])

dummy.remove([x+1,y+1])

elif ([x,y+1] in dummy) and ([x-1,y] in dummy) and ([x-1,y+1] in

dummy):

rest.append([[x,y],[x,y+1],[x-1,y],[x-1,y+1]])

dummy.remove([x+1,y])

dummy.remove([x,y-1])

dummy.remove([x+1,y-1])

dummy.remove([x,y])

elif ([x,y-1] in dummy) and ([x+1,y] in dummy) and ([x+1,y-1] in

dummy):

rest.append([[x,y],[x,y-1],[x+1,y],[x+1,y-1]])

dummy.remove([x,y])

dummy.remove([x+1,y])

dummy.remove([x,y-1])

dummy.remove([x+1,y-1])

elif ([x,y-1] in dummy) and ([x-1,y] in dummy) and ([x-1,y-1] in

dummy):

rest.append([[x,y],[x,y-1],[x-1,y],[x-1,y-1]])

dummy.remove([x,y])

dummy.remove([x-1,y])

dummy.remove([x,y-1])

dummy.remove([x-1,y-1])

45

elif [x,y+1] in dummy:

rest.append([[x,y],[x,y+1]])

dummy.remove([x,y])

dummy.remove([x,y+1])

elif [x,y-1] in dummy:

rest.append([[x,y],[x,y-1]])

dummy.remove([x,y])

dummy.remove([x,y-1])

elif [x+1,y] in dummy:

rest.append([[x,y],[x+1,y]])

dummy.remove([x,y])

dummy.remove([x+1,y])

elif [x-1,y] in dummy:

rest.append([[x,y],[x-1,y]])

dummy.remove([x,y])

dummy.remove([x-1,y])

else:

rest.append([[x,y]])

dummy.remove([x,y])

return(rest)

This big glob of code groups stuff together as either 1, 2, or 4-cell regions.

Our existing ones take up a lot of space, and are pretty big, so it’s nice to have

some that will definitely be small. Now that our grid is totally partitioned, all

we need is two functions: one to determine centroids, and one to render our

galaxies on paper, using the tikzpackage LaTex extension that all my diagrams

were made in. They’re pretty boilerplate, and are as follows.

def centralizer(regions):

centroids = []

for i in range(len(regions)):

46

region = regions[i]

mx = 0

my = 0

s = len(region)

if s > 1:

for j in range(s):

mx += region[j][0]

my += region[j][1]

centroids.append([mx/s,my/s])

else:

centroids.append(region[0])

return(centroids)

def tikzgenerator(n):

g = fillinthe(starsystem(n),n)

c = centralizer(g)

print("\ " + "begin{center}")

print("\ " + "begin{tikzpicture}")

print("\ " + f"draw[step=1cm,lightgray,very thin] (0,0) grid

({n},{n});")

for i in range(len(c)):

print("\ " + f"fill[color=black] {c[i][0]+0.5,c[i][1]+0.5}

circle (0.2);")

print("\ " + "end{tikzpicture}")

print("\ " + "end{center}")

return

for i in range(20):

tikzgenerator(7)

for i in range(20):

tikzgenerator(10)

for i in range(20):

47

tikzgenerator(15)

With this, I can leave you with a whole bunch of galaxies. If you need

more, run the above code for whatever n you want. Happy solving!

7.3 PUZZLES

7.3.1 n=7

48

49

50

51

52

53

54

55

7.3.2 n=10

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

7.3.3 n=15

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

8 SOURCES

1. https://content.time.com/time/arts/article/0,8599,1205307,00.html

2. https://content.time.com/time/specials/packages/article /0,28804,1975813 1975838 1976198,00.html

95

3. https://www.nikoli.co.jp/en/puzzles/tentai show/

4. https://www.chiark.greenend.org.uk/ sgtatham/puzzles/js/galaxies.html

96

